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Abstract

We propose a new model of volatility where financial leverage amplifies equity
volatility by what we call the “leverage multiplier.” The exact specification is moti-
vated by standard structural models of credit; however, our parametrization departs
from the classic Merton (1974) model and can accommodate environments where the
firm’s asset volatility is stochastic, asset returns can jump, and asset shocks are non-
normal. In addition, our specification nests both a standard GARCH and the Merton
model, which allows for a statistical test of how leverage interacts with equity volatil-
ity. Empirically, the Structural GARCH model outperforms a standard asymmetric
GARCH model for approximately 74 percent of the financial firms we analyze. We
then apply the Structural GARCH model to two empirical applications: the leverage
effect and systemic risk measurement. As a part of our systemic risk analysis, we de-
fine a new measure called “precautionary capital” that uses our model to quantify the
advantages of regulation aimed at reducing financial firm leverage.
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1 Introduction

In the financial crisis of 2007-09, equity volatilities hit sustained levels not seen since the

Great Depression. This was particularly true for the financial sector. It was also observed

that the leverage in the financial sector reached extremely high levels. When firm leverage

is high, as measured by firm asset value divided by equity value, it is not surprising that

equities would be highly volatile. Is it possible that asset volatility did not rise during the

financial crisis even though equity volatility hit such high levels?

In this paper, we propose an econometric approach to disentangle the effects of leverage

on equity volatility. The model is motivated by the seminal insights of the Merton (1974)

model of firm capital structure, extended to incorporate time variation in asset volatility. A

non-exhaustive list of theoretical extensions of the Merton (1974) model includes Black and

Cox (1976), Leland and Toft (1996), Collin-Dufresne and Goldstein (2001), and McQuade

(2013). While these studies provide valuable theoretical insights regarding capital structure

and credit spreads, our goal is empirical in nature. We aim to develop a flexible economet-

ric specification to capture the relationship between leverage and volatility. Our approach

begins by examining the theoretical relationship between asset volatility and equity volatil-

ity through the lens of structural models of credit. Through this exposition, we introduce

the “leverage multiplier,” which quantifies how leverage amplifies asset volatility into equity

volatility.1 We explore the functional form of the leverage multiplier in a variety of settings

and show that even when assets follow stochastic volatility and experience jumps, equity

volatility is well-captured by our leverage multiplier. Further, we show that the leverage

multiplier takes roughly the same form across different asset return specifications.

Under reasonable parameterizations, the volatility of asset volatility and jumps in assets
1Another important feature of this model is nonlinear amplification by leverage.
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do indeed matter for the level of equity. However, the volatility of asset volatility and jumps

mean much less for high frequency equity returns and volatility. The intuition is simple: the

time it takes volatility to mean revert is much shorter than typical debt maturities, and thus

long run forecasts of cumulative asset volatility are virtually constant. In turn, daily equity

returns are dictated primarily by leverage and daily shocks to asset returns — shocks to the

volatility of assets get washed out. Similarly, daily equity volatility is primarily determined

by leverage and the level of asset volatility. These findings are echoed by Schaefer and

Strebulaev (2008), who found that hedge ratios from the Merton (1974) model may be quite

accurate even though the levels are not well determined.

Our theoretical exploration of the properties of the leverage multiplier leads us to adopt

a simple econometric specification of equity and asset returns. We call this specification

a Structural GARCH model given its theoretical underpinnings. The Structural GARCH

takes advantage of simple mathematical transformations of the functions delivered by the

Black-Scholes-Merton model, but is designed to provide the flexibility to capture a number

of stochastic asset volatility (and jump) settings, both in continuous and discrete time.

It is important to note, however, that our parameterization is one of many possible ways

to capture the volatility-leverage connection. The deeper contribution of the Structural

GARCH is to provide a more general framework for empirical modeling of asset volatility,

equity volatility, and leverage. One of the key features of this framework is that higher levels

of leverage result in higher amplification of asset shocks on equity returns, as well as higher

(stochastic) equity volatility. Because this was apparent in the recent financial crisis, we

estimate our model for a number of financial firms and our subsequent empirical analysis

focuses on firms in this sector.

Our empirical results show that incorporating leverage via the leverage multiplier, as
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in our Structural GARCH model, outperforms a simple vanilla asymmetric GARCH model

of equity returns. An advantage of our model is that it nests a vanilla GARCH, and thus

provides a natural way to assess the statistical significance of leverage for equity volatility.2

For the sample of firms we examine, nearly 74 percent favor our Structural GARCH model

over a plain asymmetric GARCH model. Since the Structural GARCH model delivers a

daily series for asset volatility, we are also able to study the joint dynamics of asset volatility

and leverage in the build up to the financial crisis. The empirical results reveal that at the

onset of the financial crisis, the rise in equity volatility was primarily due to rising leverage,

but later phases also include substantial rises in asset volatility.

We use our Structural GARCH model in two applications: determining the sources of

asymmetric equity volatility and measuring systemic risk. Equity volatility asymmetry refers

to the well-known negative correlation between equity returns and equity volatility. One pop-

ular explanation for this empirical regularity is leverage. Namely, when a firm experiences

negative equity returns, its leverage mechanically rises, and thus the firm has more risk

(volatility). Some examples of previous work on this topic include Black (1976), Christie

(1982), Golsten et al. (1993), and Beakart and Wu (2001). The challenge faced by previous

studies is that asset returns are unobservable, so teasing out the causes of volatility asym-

metry requires alternative strategies. Choi and Richardson (2012) approach this problem by

using observable security prices to directly compute the market value of assets at a monthly

frequency. The Structural GARCH model provides a novel way to explore this hypothesis,

given that we obtain asymmetric GARCH parameter estimates for high-frequency (daily)
2Indeed, asymmetric GARCH models have been interpreted as capturing the interaction between leverage

and equity volatility. This is famously known as the “leverage effect” of Black (1976) and Christie (1982). In
contrast, our model directly incorporates volatility asymmetry at the asset level and also directly incorporates
leverage into equity volatility. As we will discuss shortly, this also allows us to tease out the root of the
observed leverage effect.
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asset returns, after controlling for leverage.3 Following intuition, we find that, on average,

firms with more leverage exhibit a bigger gap between the asymmetry of their equity return

volatility and their asset return volatility. Nonetheless, we find that the overall contribution

of measured leverage to the so-called “leverage effect” is somewhat weak; for our sample of

firms, leverage accounts for only about 17 percent of equity volatility asymmetry.4

The second application of our Structural GARCH model involves systemic risk measure-

ment. We extend the SRISK measure of Acharya et al. (2012) and Brownlees and Engle

(2012) by incorporating the Structural GARCH model for firm-level equity returns. The

SRISK measure captures how much capital a firm would need in the event of another finan-

cial crisis, where a financial crisis is proxied by a decline of 40 percent over six months in the

aggregate stock market. Importantly, the leverage amplification mechanism built into our

model naturally embeds the types of volatility-leverage spirals observed during the crisis. It

is precisely this feature that makes leverage an important consideration even in times of low

volatility, since a negative sequence of equity returns increases leverage and further amplifies

negative shocks to assets. Accordingly, we show that using the Structural GARCH model

for systemic risk measurement shows promise in providing earlier signals of financial firm

distress. Compared with models that do not incorporate leverage amplifications explicitly,

the model-implied expected capital shortfall in a crisis for firms, such as Citibank and Bank

of America, rises much earlier prior to the financial crisis (and remains as high or higher
3Also, in contrast to previous work, our model directly incorporates risky debt into the equity return

specification. The emphasis of risky debt is important, since it introduces important nonlinear interactions
between leverage and equity volatility.

4These results are consistent with Beakart and Wu (2001) and Lo and Hasanhodzic (2011) who find
that leverage does not appear to fully explain the asymmetry in equity volatility. Beakart and Wu (2001),
however, assume that debt is riskless and are therefore silent about the nonlinear interaction between equity
volatility and leverage. Lo and Hasanhodzic (2011) focus on a subset of firms with no leverage, which
we do not pursue in this paper. The results in Choi and Richardson (2012) are also consistent with our
cross-sectional results, but they find evidence of a larger contribution of leverage to the leverage effect.
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through the crisis). Thus, Structural GARCH serves as an important step towards develop-

ing countercyclical measures of systemic risk that may also motivate policies which prevent

excess leverage from building within the financial system.

To this end, we then propose a new measure of systemic risk which we call precautionary

capital. Precautionary capital asks the question: how much equity do we have to add to

a firm today in order to ensure some arbitrary level of confidence that the firm will not go

bankrupt in a future crisis? In the Structural GARCH model, we then show that preventative

measures that reduce leverage can be very powerful since holding more capital results in lower

volatility, lower beta, and lower probability of failure, a sensible outcome, but not present in

ordinary volatility models.

Section 2 introduces the Structural GARCH model and its economic underpinnings. Here,

we will use basic ideas from structural models of credit to explore the relationship between

leverage and equity volatility, which leads to a natural econometric specification for equity

and asset returns. In Section 3, we describe the data we use in our empirical work, along with

some technical issues regarding estimation of the model. Section 4 describes our empirical

results and explores some aggregate implications of our model. In sections 5 and 6, we

apply the Structural GARCH model to two applications: asymmetric volatility in equity

returns and systemic risk measurement. Finally, Section 7 concludes with suggestions of

more applications of the Structural GARCH model.

2 Structural GARCH

Our goal is to explore the relationship between the leverage of a firm and its equity volatility.

A simple framework to explore this relationship is the classical Merton (1974) model of credit
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risk and extensions of this seminal work. Equity holders are entitled to the assets of the firm

that exceed the outstanding debt. As Merton observed, equity can then be viewed as a

call option on the total assets of a firm with the strike of the option being the debt level

of the firm. In this model, the fact that firms have outstanding debt of varying maturities

is ignored, and we will also adopt this assumption for the sake of maintaining a simple

econometric model. The purpose of using structural models is to provide economic intuition

for how leverage and equity volatility should interact. It is worth emphasizing that we call

our volatility model a “Structural GARCH” because it is motivated from this analysis, not

because it derives precisely from a particular option pricing model. In fact, one advantage of

our approach is our ability to remain relatively neutral about the true option pricing model

that underlies the data generating process.

2.1 Motivating the Econometric Model

As is standard in structural models of credit, the equity value of a firm is a function of the

asset process and the debt level of the firm. We can therefore define the equity value as

follows:

Et = f (At, Dt, �A,t, ⌧, rt) (1)

where f(·) is an unspecified call option function, At is the current market value of assets, Dt

is the current book value of outstanding debt, �A,t is the (potentially stochastic) volatility of

the assets. ⌧ is the life of the debt, and finally, rt is the annualized risk-free rate at time t.5

In order for the relationship in Equation (1) to hold true in a general sense, we assume that

the future distribution of volatility is unimportant for the option value. As we will see, our
5In Appendix A, we re-derive all of the subsequent results in the presence of asset jumps. Because we

find the results to be essentially unchanged, we focus on the simpler case of only stochastic volatility for the
sake of brevity.

7



volatility model is flexible enough that this is not a restrictive assumption. Next, we specify

the following generic process for assets and variance:

dAt

At
= µA(t)dt+ �A,tdBA(t)

d�2
A,t = µv(t, �A,t)dt+ �v(t, �A,t)dBv(t) (2)

where dBA(t) is a standard Brownian motion. �A,t captures potential time-varying asset

volatility, which we will model formally in Section 2.4.6 The process we specify for asset

volatility is general enough to capture popular stochastic volatility models, such as Hes-

ton (1993) or the Ornstein-Uhlenbeck process employed by, for example, Stein and Stein

(1991). We allow an arbitrary instantaneous correlation of ⇢t between the shock to asset

returns, dBA(t), and the shock to asset volatility, dBv(t). The specification in Equation

(2) encompasses a wide range of stochastic volatility models popular in the option pricing

literature.7

The instantaneous return on equity is computed via simple application of Itō’s Lemma:

dEt

Et
= �t

At

Dt

Dt

Et
· dAt

At
+

⌫t
Et

· d�A,t

+

1

2Et

"

@2f

@A2
t

d hAit +
@2f

d (�A,t)
2d

D

�f
A

E

t
+

@2f

@A@�A,t
d hA, �Ait

#

(3)

where �t = @f/@At is the “delta” in option pricing, ⌫t = @f/@�A,t is the “vega” of the

option, and hXit denotes the quadratic variation process for an arbitrary stochastic process

Xt. Here we have ignored the sensitivity of the option value to the maturity of the debt.8 In
6Implicit is that the volatility process satisfies the usual restrictions necessary to apply Itō’s Lemma.
7A short and certainly incomplete list includes Black and Scholes (1973), Heston (1993), and Bates

(1996).
8For simplicity, we also ignore sensitivity to the risk-free rate, which is trivially satisfied if we assume a
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our applications, ⌧ will be large enough that this assumption is innocuous. All the quadratic

variation terms are of the order O(dt) and we collapse them to an unspecified function

q(At, �A,t; f), where the notation captures the dependence of the higher order Itō terms on

the partial derivatives of the call option pricing function.

In reality, we do not observe At because it is the market value of assets. However, given

that the call option pricing function is monotonically increasing in its first argument, it is

safe to assume that f(·) is invertible with respect to this argument. We further assume that

the call pricing function is homogenous of degree one in its first two arguments, which is

a standard assumption in the option pricing literature. We define the inverse call option

formula as follows:

At

Dt
= g (Et/Dt, 1, �A,t, ⌧, rt)

⌘ f�1
(Et/Dt, 1, �A,t, ⌧, rt) (4)

Equation (3) reduces returns to the following:9

dEt

Et
=

⌘LM
(

Et/Dt,1,�A,t,⌧,rt)
z }| {

�t · g
⇣

Et/Dt, 1, �
f
A,t, ⌧, rt

⌘

· Dt

Et
⇥dAt

At
+

⌫t
Et

· d�A,t + q(At, �
f
A,t; f)dt

= LM (Et/Dt, 1, �A,t, ⌧, rt)⇥ dAt

At
+

⌫t
Et

· d�A,t + q(At, �
f
A,t; f)dt (5)

For reasons that will become clear shortly, we call LM
⇣

Et/Dt, 1, �
f
A,t, ⌧, rt

⌘

the “leverage

constant term structure.
9Using the fact that f(·) is homogenous of degree 1 in its first argument also implies that

�t = @f (At, Dt,�A,t, ⌧, r) /@At = @f (At/Dt, 1,�A,t, ⌧, r) /@(At/Dt)

So with an inverse option pricing formula, g(·) in hand we can define the delta in terms of leverage Et/Dt.
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multiplier.” When it is obvious, we will drop the functional dependence of the leverage

multiplier on leverage, etc., and instead denote it simply by LMt. In order to obtain a

complete law of motion for equity, we need to know the dynamics of volatility, �A,t, as

opposed to variance. Itō’s Lemma implies that the volatility process behaves as follows:

d�A,t =

⌘s
(

�A,t;µv ,�v)

z }| {

"

µv(t, vt)

2�A,t
� �2

v(t, vt)

8�3
A,t

#

dt+
�v(t, vt)

2�A,t
dBv(t)

= s (�A,t;µv, �v) dt+
�v(t, vt)

2�A,t
dBv(t) (6)

Plugging Equations (2) and (6) into Equation (5) yields the desired full equation of motion

for equity returns:

dEt

Et
= [LMtµA(t) + s (�A,t;µv, �v) + q(At, �A,t; f)] dt

+LMt�A,tdBA(t) +
⌫t
Et

�v(t, �A,t)

2�A,t
dBv(t) (7)

Because our empirical focus will be on daily equity and asset returns, we ignore the drift term

for equity. Typical daily equity returns are virtually zero on average, so for our purposes

ignoring the equity drift is harmless.10 Instantaneous equity returns then naturally derive

from Equation (7) with no drift:

dEt

Et
= LMt�A,tdBA(t) +

⌫t
Et

�v(t, �A,t)

2�A,t
dBv(t) (8)

Suppose for a moment that we can ignore the contribution of asset volatility shocks, dBv(t),

to equity returns.
10Indeed, ignoring the drift when thinking about long-horizon asset returns (and levels) is not trivial.
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Assumption 1. For the purposes of daily equity return dynamics, we can ignore the follow-

ing term in Equation (8):

⌫t
Et

�v(t, �A,t)

2�A,t
dBv(t)

In Appendix A, we show that Assumption 1 is appropriate in a variety of option pricing

models.11 The intuition behind this result is as follows: mean reversion is embedded in any

reasonable model of volatility. In this case, the time it takes volatility to mean revert is

much shorter than typical debt maturities for firms. Thus, the cumulative asset volatility

over the life of the option (equity) is effectively constant. In turn, the ⌫t term is nearly zero,

and so shocks to asset volatility get washed out as far as equity returns are concerned. In the

Black-Scholes-Merton (BSM) case, this assumption holds exactly because asset volatility is

constant. Under Assumption 1, equity returns and instantaneous equity volatility are given

by:

dEt

Et
= LMt�A,tdBA(t)

volt

✓

dEt

Et

◆

= LMt ⇥ �A,t (9)

Equation (9) is our key relationship of interest. The equation states that equity volatility

(returns) is a scaled function of asset volatility (returns), where the function depends on

financial leverage, Dt/Et, as well as asset volatility over the life of the option (and the

interest rate). The moniker of the “leverage multiplier” should be clear now: LMt describes

how equity volatility is amplified by financial leverage. It is illustrative to first explore the

shape of the leverage multiplier; a natural benchmark to do so is within the Black-Scholes-
11That is, when the underlying asset process has jumps, stochastic volatility, stochastic volatility and

jumps, etc.
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Merton model.

2.2 The Shape of the Leverage Multiplier

2.2.1 Leverage Multiplier in the Black-Scholes-Merton World

It is straightforward to compute LM(·) when BSM is the relevant option pricing model. To

start, we fix annualized asset volatility to �A = 0.15, time to maturity of the debt ⌧ = 5, and

the risk-free rate r = 0.03. Figure 1 plots the leverage multiplier against financial leverage

(Dt/Et) in this case:

Figure 1: BSM Leverage Multiplier
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Notes: This figure plots the leverage multiplier in the BSM model. Annualized asset volatility is set to
�A = 0.15, the time to maturity of the debt is ⌧ = 5, and the annualized risk-free rate is r = 0.03.

From Figure 1, we can see that the leverage multiplier is increasing in leverage. Intuitively,

when a firm is more leveraged, its equity option value is further from the money and asset

returns exceed equity returns by a larger degree. When leverage is zero (Dt/Et = 0), the

leverage multiplier is one, because assets must be equal to equity. Next, we investigate how
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the BSM leverage multiplier changes as we vary the time to expiration and volatility:

Figure 2: BSM Leverage Multiplier with Varying �A and ⌧
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Notes: This figure plots the leverage multiplier in the BSM model. Annualized asset volatility takes on one
of two values �A 2 {0.1, 0.2}. The time to maturity of the debt also takes on two possible values ⌧ 2 {5, 10}.
The annualized risk-free rate is r = 0.03

Let us begin with the case where debt maturity is held constant but volatility varies.

When volatility increases, the leverage multiplier decreases. In this case, the likelihood

that the equity is “in the money” rises with volatility and the effect of leverage on equity

volatility is dampened. A similar argument holds when volatility is fixed and debt maturity

varies. Extending the maturity of the debt serves to dampen the leverage multiplier because

the equity has a better chance of expiring with value. The BSM model provides a useful

benchmark in understanding the economics of the leverage multiplier, but it also provides

a simple and easy way to compute a set of functions when evaluating LM(·). Our primary

objective is to estimate a simple functional form for LM(·) that is not restricted to the

assumptions of the BSM. However, we will ultimately be able to use the functions provided
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by BSM as a starting point for constructing a flexible specification for LM(·).

2.2.2 The Leverage Multiplier in Other Option Pricing Settings

The purpose of this subsection is to get a sense of the shape of the leverage multiplier in

more complicated option pricing settings. Figure 3 summarizes visually:

Figure 3: The Leverage Multiplier in Other Option Pricing Models
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Notes: This figure plots the leverage multiplier in a variety of option pricing models. Full details of the
construction can be found in Appendix A. The upper left panel is the benchmark BSM Model. The upper
right panel is the Merton (1976) jump-diffusion model. The lower left panel is the Heston (1993) stochastic
volatility model. Finally, the lower right panel is a stochastic volatility with jumps model that is used by
Bates (1996) and Bakshi et al. (1997).

The full details of how we constructed the leverage multiplier in each of the specific

option pricing models are found in Appendix A. In addition to the benchmark BSM case,

Figure 3 plots the leverage multiplier in the Merton (1976) jump-diffusion model, the Heston
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(1993) stochastic volatility model, and the stochastic volatility with jumps model employed

by Bates (1996) and Bakshi et al. (1997). Figure 3 shows that, for a wide range of leverage,

the shape of the leverage multiplier is roughly the same across option pricing models. So

far, our exploration of the leverage multiplier has been in the context of continuous time.

However, our eventual econometric model will fall under the discrete time GARCH class of

models for assets. To understand how the leverage multiplier behaves in this setting, we now

turn to a Monte Carlo exercise involving GARCH option pricing.

2.2.3 The Appropriate Leverage Multiplier with GARCH and Non-Normality

Our Monte Carlo approach is motivated by option models estimated when the underlying

follows a GARCH type process, as in Barone-Adesi, Engle, and Mancini (2008). When

pricing options on GARCH processes, there is often no closed form solution for call prices,

necessitating the use of simulation techniques. First, we assume a risk-neutral return process

for assets. In our simulations, we adopt four different asset processes: (i) a GARCH(1,1)

process with normally distributed innovations; (ii) a GARCH(1,1) process with t-distributed

innovations; (iii) an asymmetric GARCH(1,1) process with normally distributed innovations;

and (iv) an asymmetric GARCH(1,1) process with t-distributed errors. The asymmetric

GARCH process we use is the GJR process of Golston et al. (1992). For completeness, we

present these recursive volatility models:

GARCH : �2
A,t = ! + ↵r2A,t�1 + ��2

A,t�1

GJR : �2
A,t = ! + ↵r2A,t�1 + �r2A,t�11rA,t�1<0 + ��2

A,t�1

The GJR process captures the familiar pattern in equity returns of negative correlation
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between volatility and returns; this correlation is captured by the asymmetry parameter, �.

In our parameterization of these processes, we set the asymmetry parameter to be quite large,

because this is one way to capture how risk-aversion affects the risk-neutral asset process.

In addition, for the models with t-distributed innovations, we set the degrees of freedom to

six in order to fatten the tails of the asset return process. In order to ensure comparability

across models within our simulation, we change ! so that the unconditional volatility of all

the processes is 15 percent annually. Table 1 summarizes our parametrization:

Parameter
Model ↵ � �

GARCH with Normal Errors 0.07 - 0.92
GARCH with t Errors 0.07 - 0.92

GJR with Normal Errors 0.022 0.18 0.884
GJR with t Errors 0.022 0.18 0.884

Table 1: Parameterizations for Simulated-Asset Processes

For each process, we simulate the asset process 10,000 times from an initial asset value of

A0 = 1. We assume the debt matures in two years and, for simplicity, set the risk-free rate to

zero. The simulation generates a set of terminal values, AT , which in turn generate an equity

value for each value of debt D.12 We then compute numerical derivatives to measure how the

equity value changes with respect to A0. Finally, we calculate the leverage multiplier implied

by each asset return process and plot it against the implied financial leverage in Figure 4.
12
E =

1
10,000

P10,000
i=1 max(AT,i �D, 0), where i is the index for each simulation run. Varying D generates

a variable range of leverage, D/E.
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Figure 4: Simulated Leverage Multiplier in Stochastic Volatility and Non-Normality
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Notes: The figure plots the simulated leverage multiplier under different asset return process specifications.
We consider GARCH and GJR process, each with normally distributed and t distributed errors. The
unconditional volatility in all the models is 15 percent annually, the time to maturity of the debt is two
years, and the risk-free rate is set to zero.

The economics behind the shape of the leverage multiplier under various asset return

processes are subtle. The benchmark case of BSM is given by the blue line in Figure 4,

and it is easy to see that in a symmetric setting, making the tails of the asset distribution

longer via GARCH decreases the leverage multiplier for larger values of debt (the green and

red lines). For larger values of debt, extending the tails of the asset distribution serves the

same function as increasing volatility in the BSM case. When we introduce asset volatility

asymmetry via the GJR process, the leverage multiplier increases dramatically relative to

the BSM benchmark (turquoise and purple lines). Volatility asymmetry effectively makes

the figure asset distribution left skewed, which shortens the right tail of the distribution and

increases the leverage multiplier. In this case, leverage has a larger amplification on equity
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volatility because high leverage corresponds to a much smaller likelihood the equity expires

“in the money.”

2.2.4 Three Properties of the Leverage Multiplier

In general, it is clear that the shape of the leverage multiplier is robust across a variety of

continuous time and discrete time option pricing models. Our preceding analysis leads us to

posit the following:

Conjecture. The leverage multiplier must, at a minimum, satisfy three basic properties:

1. When leverage is zero, the leverage multiplier has a value of one.

2. The leverage multiplier is weakly increasing in leverage.

3. The leverage multiplier is concave in leverage.

As previously discussed, the first property is mechanical and true by definition. It is

slightly easier to prove the latter two properties within a specific option pricing framework,

though it has proven more difficult to do so in a general setting. However, because we have

shown that the leverage multiplier satisfies these three properties in a number of different

option pricing models, we believe these three properties are not model dependent and likely

derive from no arbitrage arguments. Perhaps more mildly, these properties should apply to

asset processes whose distributions are plausible in the real world (that is, not a degenerative

risk-neutral distribution with all the mass at some extreme point) and for reasonable levels of

leverage. The remainder of our analysis will take these three properties as given. With this

in mind, we propose a parameterized function to capture leverage amplification mechanisms

in a relatively “model-free” way.

18



2.3 A Flexible Leverage Multiplier

In the derivation of Equation (9), we did not assign specific functions to g(·) and �t. We

define gBSM
(·) and �

BSM
t as the BSM inverse call and delta functions. We then propose the

following specification for the leverage multiplier:

LM
⇣

Dt/Et, �
f
A,t, ⌧, rt;�

⌘

=



�

BSM
t

⇣

Et/Dt, 1, �
f
A,t, ⌧, rt

⌘

⇥ gBSM
⇣

Et/Dt, 1, �
f
A,t, ⌧, rt

⌘

⇥ Dt

Et

��

(10)

In this case, � is the departure from the BSM model. When taking our model to data, it will

be an estimated parameter. One advantage of our proposed leverage multiplier in Equation

(10) is its relative simplicity in terms of computation, as the BSM delta and inverse call

functions are numerically tractable. We discuss these potential computation issues later in

Section 3.2.

It is worth emphasizing that our leverage multiplier simply uses a mathematical transfor-

mation of the BSM functions. For example, in a BSM world, gBSM
(·) would be interpreted

as the asset-to-debt ratio, but for our model it is simply a function. Similarly, �BSM
t in our

specification is not interpreted as the correct hedge ratio, but merely serves as a function for

our purposes. Let us now examine how our leverage multiplier changes for different values

of �, which we plot in Figure 5:
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Figure 5: Leverage Multiplier for Different Values �
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Notes: This figure plots the leverage multiplier according to the specification in (10) for different values of
�. In our baseline case, the annualized �A is held constant at 0.15, ⌧ = 5, and r = 0.03.

Unsurprisingly, increasing � increases the leverage multiplier. For firms with a low value

of �, high levels of leverage have a small amplification effect in terms of equity volatility.

Building on the intuition from the BSM case, we see that for these firms leverage plays a small

role in the moneyness of the equity, which likely corresponds to healthier firms. The converse

holds true as well, as firms with high � experience large equity volatility amplification, even

for low levels of financial leverage.

To highlight the flexibility of our specification, we revisit the Monte Carlo exercise from

Section 2.2.3. Figure 6 plots the leverage multiplier in a GARCH option pricing setting, as

well as our leverage multiplier for a few different values of �.
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Figure 6: Simulated Leverage Multiplier and Our Specification
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Notes: The figure plots the simulated leverage multiplier under different asset return process specifications.
We consider GARCH and GJR process, each with normally distributed and t distributed errors. The
unconditional volatility in all the models is 15 percent annually, the time to maturity of the debt is two
years, and the risk-free rate is set to zero. In addition, we plot our leverage multiplier from specification (10)
for different values of � to demonstrate that our model captures various asset return processes well.

Figure 6 shows that varying � in our leverage multiplier specification captures various

asset return processes well. Increasing � is successful in matching the patterns in the leverage

multiplier that arise in stochastic volatility, asymmetric volatility, and non-normal settings.

Importantly, our flexible leverage multiplier also preserves the three necessary properties

outlined in Section 2.2.4. Raising the BSM leverage multiplier to an arbitrary power naturally

preserves the condition for LM(·) to have a value of one when leverage is zero. It is also clear

from Figure 5 and Figure 6 that varying � preserves the concavity and increasing nature of

the BSM leverage multiplier.13 While our specification is seemingly simple, it is not a trivial
13To be precise, � preserves the concavity so long as it is not too large, long-run asset volatility is not

too small, and ⌧ is not too small. In practice, this is not an issue, even for financial firms who have larger
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task to define a function that retains the flexibility of ours but also maintains the necessary

properties of the leverage multiplier. Our analysis in Section 2.2.1 also demonstrated that

LM is decreasing in asset volatility and time-to-maturity.14 Because our leverage multiplier

is a power function of the BSM multiplier, an additional advantage of our specification is

that it inherits these natural properties from the Black-Scholes-Merton model.

2.4 The Full Recursive Model

The preceding analysis motivates the use of our leverage multiplier in describing the relation-

ship between equity volatility and leverage. To make the model fully operational in discrete

time, we propose the following process for equity returns:

rE,t = LMt�1rA,t

rA,t =

p

hA,t"A,t, "A,t ⇠ D(0, 1)

hA,t = ! + ↵

✓

rE,t�1

LMt�2

◆2

+ �

✓

rE,t�1

LMt�2

◆2

1rE,t�1<0 + �hA,t�1

LMt�1 =



4BSM
t�1 ⇥ gBSM

⇣

Et�1/Dt�1, 1, �
f
A,t�1, ⌧

⌘

⇥ Dt�1

Et�1

��

(11)

We will call the specification described in Equation (11) as a “Structural GARCH” model.15

The parameter set for the Structural GARCH is ⇥ := (!,↵, �, �,�), so there is only one extra

amounts of leverage. When we estimate the model, we later verify that none of the fitted � result in violations
of this sort.

14Our analysis in Section 2.2.1 applied to the BSM model, but the notion that the leverage multiplier is
decreasing in both asset volatility and time to maturity holds more broadly. Merton (1974) shows that as the
time-to-maturity goes to infinity, the option becomes the same as the underlying, so the leverage multiplier
must decrease to its lower bound of one (Theorem 3). Similarly, the call option pricing formula is weakly
increasing in volatility (Theorem 8). So long as the rate of increase in the delta of the option w.r.t volatility
is slower than for the underlying option price, the leverage multiplier will be decreasing in asset volatility.

15In reality our model is a Structural GARCH(1,1) model, because it includes a single lag of the squared
asset return and asset volatility. Incorporating a richer lag structure is straightforward, so that our model
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parameter compared to a vanilla GJR model. We will confront the issue of how to compute

⌧ and �f
A,t�1 in the next section when describing the data and estimation techniques used in

our empirical work. We also introduce lags in the appropriate variables (e.g., the leverage

multiplier) to ensure that one-step ahead volatility forecasts are indeed in the previous day’s

information set. The model in (11) nests both a simple GJR model (� = 0) and the BSM

model (� = 1), and provides a statistical test of how leverage affects equity volatility.16 This

is another attractive feature of our leverage multiplier from an econometric perspective, and

adds to the theoretically appealing qualities we highlighted in Section 2.3.

The equity return series will inherit volatility asymmetry from the asset return series,

an important feature of equity returns in the data.17 The recursion for equity returns (and

asset returns) in (11) is simple and straightforward to compute, yet powerful. For example,

when simulating this model, if a series of negative asset returns is realized (and hence nega-

tive equity returns since they share the same shock), volatility rises due to the asymmetric

specification inherent in the GJR. In that case, leverage also rises, increasing the leverage

multiplier and resulting in an even stronger amplification effect for equity volatility. As we

saw in the recent financial crisis, this was a key feature of the data, particularly for highly

leverage financial firms. Additionally, by letting � vary from firm-to-firm, we effectively

allow a different option pricing model to apply to the capital structure of each firm. This

can naturally be generalized to Structural GARCH(p, q) model as follows:

hA,t = ! +

p
X

j=1

↵j

✓

rE,t�j

LMt�j�1

◆2

+

p
X

j=1

�j

✓

rE,t�j

LMt�j�1

◆2

1rE,t�j<0 +

q
X

i=1

�ihA,t�i

16
� = 1 nests the BSM exactly if we use a constant forecast of asset volatility over the lifetime of the

option. As mentioned, we estimate this model against a model where we use a GJR forecast for �f
A,t. The

results are similar, so we refer to the two without distinction.
17For example, it is has been shown that a GJR process for equity can replicate features of equity option

data like the volatility smirk.
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flexibility is difficult to achieve if we impose an option pricing model on the data a priori

because, as we showed, � allows us to move across different classes of option pricing models.

To the extent that our leverage multiplier form captures various option pricing models, the

Structural GARCH allows us to infer a high frequency asset return series with stochastic

volatility in a relatively model-free way. Later, this will prove to be extremely useful for a

number of applications of the model.

We also wish to emphasize there are many ways to parameterize the observation that the

leverage multiplier is similar across option pricing models for the purposes of volatility mod-

eling. We have chosen a particular specification that balances parsimony with the underlying

economics, while still retaining useful statistical properties. However, the themes that under-

lie the Structural GARCH are broader than our specific econometric model. An additional

contribution of this paper is to provide a simple and economically grounded framework with

widespread application for modeling volatility and leverage jointly.

3 Data Description and Estimation Details

3.1 Data Description

We now turn to estimating the Structural GARCH model using equity return data. To

compute the leverage multiplier, we also need balance sheet information, which we obtain

from Bloomberg. In particular, we define Dt as the book value of debt at time t. To avoid

estimation issues inherent with quarterly data, we smooth the book value of debt using

an exponential average with smoothing parameter of 0.01. This smoothing parameter value

implies a half-life of approximately 70 days in terms of the weights of the exponential average,

which is reasonable for quarterly data.
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The set of firms we analyze are financial firms over a period that spans from January 3,

1990 to February 14, 2014.18 The reasons we focus on financial firms are twofold: first, these

firms typically have extraordinarily high leverage and structural models have failed to model

these firms well. Second, given the high volatility in the recent crisis that was accompanied

by unprecedented leverage, this set of firms presents an important sector to model from a

systemic risk and policy perspective. To this end, one of the applications of our model that

we will explore in later sections involves systemic risk measurement of financials. In future

work, we hope to extend the set of firms we analyze.

3.2 Numerical Implementation

When estimating the full model, we use quasi-maximum likelihood and the associated stan-

dard errors for parameter estimates. In order to ensure a global optimum is reached, we

also conduct each maximum likelihood optimization over a grid of 24 different starting val-

ues.19 Despite the relative simplicity of our model, quasi-maximum likelihood estimation is

still quite costly from a computational perspective. To see why, let us explicitly define our

log-likelihood function from the specification in (11):

L
⇣

!,↵, �, �,�; {rE,t, Et, Dt}Tt=2

⌘

:= �1

2

T
X

t=2

"

log(2⇡) + log(hE,t) +
(rE,t)

2

hE,t

#

= �1

2

T
X

t=2

"

log(2⇡) + log(LM2
t�1hA,t) +

(rE,t)
2

LM2
t�1hA,t

#

where all summations begin from t = 2 because the leverage multiplier contains lagged

equity and debt values. From our definition of the leverage multiplier, it is clear that a single
18A full description of the set of firms is contained in Appendix D.1.
19The Matlab code for estimation of the model via quasi-maximum likelihood (QMLE) with the correct

standard errors is available upon request.
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computation of LMt requires an inversion of the BSM call option formula. For a firm with

10 years of data, this means evaluating L(·) at a single parameter set requires approximately

10⇥252 = 2520 inversions of the BSM call option formula. In turn, maximizing a single firm’s

likelihood function typically involves 180 function evaluations, which means 2520 ⇥ 180 =

453, 600 inversions. As mentioned, we use 24 different starting values to ensure a global

maximum is reached, two different types of asset volatility over the life of the debt, and 30

different debt maturities (more details follow). In total, this means for an average firm in our

sample, we must invert the BSM function 2520⇥ 280⇥ 24⇥ 2⇥ 30 = 1, 016, 064, 000 times,

which is computationally expensive given there is no closed form formula for the inverse

BSM function.20

To make the problem computational tractable, we estimate all of our models on the

Amazon Elastic Compute Cloud. The computing unit we use is their latest generation

Linux based machine with 32 CPUs, and 60 GB of RAM. Estimation of each firm is done

using parallel processing, and the average firm takes about 80 minutes to estimate the full

model. Since we estimate the model for more than 80 firms, we use many different computing

units simultaneously to make the total time more reasonable (approximately 12 hours for all

firms).

The remaining issues are how to treat both the time to maturity of the debt ⌧ , the asset

volatility over the life of the debt �f
A,t, and the risk-free rate, rt.

Time to Maturity of the Debt

An input to the leverage multiplier is time to maturity of the debt. Because the book value

of debt combines a number of different debt maturities, we simply iterate over different ⌧

20Later in Section 6, we will simulate the Structural GARCH models thousands of times over long horizons,
also a computationally taxing task for similar reasons.
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during estimation. Specifically, we estimate the model for ⌧ 2 [1, 30], restricting ⌧ to take

on integer values. We keep the version of the model that attains the highest log-likelihood

function.

Risk Free Rate

To compute the leverage multiplier, we must also input the risk free rate over the life

of the debt. We do so by using a zero-curve provided by OptionsMetrics, which is derived

from BBA LIBOR rates and settlement prices of CME Eurodollar futures. We then linearly

interpolate (with flat endpoints beyond the maximum maturity) to determine the riskless

rate for a specific maturity.

Asset Volatility Over Life of Debt

We take two different approaches for the computing the value of �f
A,t. The first is to

use the unconditional volatility implied by the asset volatility series corresponding to the

unconditional volatility of a GJR process. Using a constant �f
A,t in fact completely eliminates

any issues in ignoring the vega terms in our motivating derivation of the leverage multiplier

(see Equation (3)). The second approach is to use the GJR forecast over the life of the debt

at each date t. It is straightforward to derive the closed form expression for this forecast.

We use both approaches for �f
A,t and choose the model with the highest likelihood.
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4 Empirical Results

4.1 Cross-Sectional Summary

We begin by presenting a cross-sectional summary of the estimation results.21 Since the main

contribution of this paper is the leverage multiplier, Figure 7 plots the estimated time-series

of the lower quartile, median, and upper quartile leverage multipliers, across all firms.

Figure 7: Time Series of Leverage Multiplier Across Quartiles
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Notes: The figure plots the quartiles of the estimated leverage multiplier across firms, and through time.

21There were 11 firms where the estimated � coefficient had convergence issues and hit the lower bound
for �. We discuss these firms specifically in Appendix D.2. The main unifying theme with these firms is that
their leverage is both low and nearly constant through the time series, so identification of � is difficult. We
exclude these firms for the remainder of the analysis.
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Table 2: Cross-Sectional Summary of Structural GARCH Parameter Estimates
Parameter Mean Mean t-stat % with |t| > 1.64

! 2.7e-06 1.70 47.2
↵ 0.0458 3.07 86.1
� 0.0721 2.91 80.6
� 0.9024 80.08 100
� 0.9834 4.00 73.6

Notes: This table provides a cross-sectional summary of the parameter estimates from the Structural GARCH
model.

As we can see, there is considerable cross-sectional heterogeneity in the leverage multi-

plier, even within financial firms. It appears that across all firms, the leverage multiplier

moves with the business cycle, which is not surprising given that leverage itself tends to do

so as well. In the top quartile of firms, leverage amplified equity volatility by a factor of

eight during the financial crisis. Evidently, for this set of firms, the leverage amplification

mechanism has remained high in the years following the crisis.

Table 1 shows cross-sectional summary statistics for the point estimates of the Structural

GARCH model. In our model, the first four estimates represent the GJR parameters for the

asset return series. It is not surprising then that they resemble those found in equity returns.

The parameter ! is an order of magnitude smaller than usual, but this is natural because

asset returns are less volatile than equity returns and ! is a determinant of the unconditional

volatility. The asset process is indeed stationary, as seen by the combination of ↵, �, � and

standard results on the stationarity of GARCH processes. One subtle but key difference in

the current estimates is the parameter �, which is higher than it is for equity returns in this

subset of stocks. Recall that � dictates the correlation between volatility and returns, and

thus it appears that the volatility asymmetry we observe in equity is somewhat dampened in

asset returns. In one application of the model, we will explore this idea further as it pertains

to the classical leverage effect of Black (1976) and Christie (1982).
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The new parameter in our model is �. The third and fourth columns of Table 2 show �

is statistically different than zero for a majority of firms. Therefore, the effect of leverage on

equity volatility via our leverage multiplier appears to be substantial for a large number of

financial firms. Interestingly, the average � is slightly less than one, as the BSM model would

suggest. These results are roughly consistent with the findings of Schaefer and Strebulaev

(2008) who find that while the Merton (1974) model does poorly in predicting the levels

of credit spreads, it is successful in generating the correct hedge ratios across the capital

structure of the firm. In our context, we interpret their finding and our estimation of � to

mean that we are able to recover the daily returns of assets well, even if we cannot pinpoint

the level of assets.

4.2 Aggregation

4.2.1 Aggregate Leverage Multiplier

We aggregate our results across firm by creating three indices: 1) a value-weighted average

equity volatility index, 2) a value-weighted average asset volatility index, and 3) an aggregate

leverage multiplier. The aggregate leverage multiplier is simply the ratio of the equity

volatility index to the asset volatility index. The weights used in creating each respective

index are derived from equity valuations. Figure 8 plots these three time series.
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Figure 8: Aggregate Equity Volatility, Asset Volatility, and Leverage Multiplier

Again, it is clear that there is a cyclicality in the aggregated leverage multiplier. A

pressing issue in the wake of the financial crisis is the role of leverage and the health of

the financial sector. Since our model provides estimates of leverage amplification in terms of

equity volatility (as well as asset volatility), we focus on these aggregated time-series through

the financial crisis:

31



2007 2008 2009 2010
0

0.5

1

1.5

2

Date

A
n
n
u
a
li
z
e
d

V
o
la
t
il
it
y

 

 
EVW Equi ty Vol Index

EVW Asse t Vol Index

2007 2008 2009 2010
2

2.5

3

3.5

Date

A
g
g
.
L
e
v
e
r
a
g
e
M
u
lt
ip
li
e
r

Figure 9: Aggregate Equity Volatility, Asset Volatility, and Leverage Multiplier During
Financial Crisis

It is clear that the rise in equity volatility for the aggregate financial sector began in the

summer of 2007. However the rise in asset volatility did not really occur until late in 2008.

The increase in leverage in 2007 was partly an increase in aggregate liabilities and partly

a fall in equity valuation. After the fall of Lehman Brothers Holdings, Inc., asset volatility

rose dramatically as well and the leverage multiplier continued to rise before stabilizing in

the spring of 2009.
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5 The Leverage Effect

We now turn to our first application of the Structural GARCH: the leverage effect. The

leverage effect of Black (1976) and Christie (1982) documents the negative correlation that

exists between equity returns and equity volatility. One possible explanation for this fact is

that when a firm experiences a fall in equity, its financial leverage mechanically rises, the

company becomes riskier, and volatility rises.

A second explanation points to the role of risk premiums in describing the negative

correlation between equity returns and equity volatility (e.g. French et al. (1987)). In this

explanation, a rise in future volatility raises the required return on equity, leading to an

immediate decline in the stock price. The Structural GARCH model provides a natural

framework to explore these issues econometrically.22

Recall that the Structural GARCH model delivers an estimate of the daily return of

assets.23 Any correlation between asset volatility and asset returns can not be due to financial

leverage. So, if a correlation does exist, it must be attributed to a risk-premium argument.

When applying the GJR volatility model to a given time series of returns, the � parameter

is one way to measure the correlation between the volatility and returns (e.g. a higher �

corresponds to more negative correlation). Therefore, we would expect the GJR � estimated

from equity returns to be larger than the same parameter estimated from asset returns.

Indeed, the median � for equity returns is 0.0811 and the median � for asset returns is

0.0676. For our subsample of firms, financial leverage accounts for roughly 17 percent of the
22Other econometric studies of the leverage effect include Bekaert and Wu (2001). The difference in our

approach is that we allow debt for the firm to be risky, as in the Merton (1974) model.
23Again, this relies on a few assumptions. First, our specification ignores the effect of changes in long-run

asset volatility on daily equity returns. Second, we assume that the book value of debt adequately captures
the outstanding liabilities of the firm. For example, we do not consider non-debt liabilities in our baseline
specification. Still, the Structural GARCH model is, at worst, effective in at least partially unlevering the
firm.
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leverage effect.

To put a bit more structure on the implications of Structural GARCH and the leverage

effect, we run the following cross-sectional regression:

�E,i � �A,i = a+ b⇥D/Ei + errori (12)

where �E,i and �A,i are the estimated GJR asymmetry parameter for firm i’s equity returns

and firm i’s asset returns respectively. D/Ei is the mean debt to equity ratio for firm i

over the sample period. The logic behind the regression in (12) is simple — to the extent

that leverage contributes to equity volatility asymmetry, firms with higher leverage should

experience a larger reduction in volatility asymmetry after unlevering the firm. Table 3

presents the results:

Variable Coefficient Value t-stat R2

b 0.0016 3.18 13.04%

Table 3: Equity Asymmetry versus Asset Asymmetry
Notes: This table presents the cross-sectional regression described in Equation (12).

As expected, firms with higher average leverage have a larger gap between their equity

and asset asymmetry. As we saw before, there is still a substantial amount of asset volatility

asymmetry (the median � parameter for assets is 0.0676), which is helps explain why the

R2 is not higher. At the asset level, firms with higher volatility asymmetry should have

higher risk premiums. Thus, as a rough quantitative exercise, we run the following two-stage

regression:

Stage 1: rAi,t = c+ �A
mkt,ir

E
mkt,t + ei,t

Stage 2: �A,i = e+ f ⇥ �A
mkt,i + "i (13)
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where rEmkt is the return on the equity market index. Stage 1 of the regression is designed

to deliver a measure of firms’s risk premium through its CAPM beta.24 The coefficient f in

the Stage 2 regression is the main variable of interest. A positive value corroborates the risk

premium story for volatility asymmetry. The results of the two-stage regression are found

in Table 4:

Variable Coefficient Value t-stat R2

f 0.0190 1.35 2.62%

Table 4: Risk-Premium Effect on Asset Asymmetry
Notes: This table presents the two-stage regression results in Equation (13). The first stage regression
estimates, for each firm’s asset return series, the equity market beta. The second stage regresses a measure
of asset volatility asymmetry, the GJR asset �, on the regression coefficient from Stage 1.

Unsurprisingly, firms with higher market betas have higher asset volatility asymmetry.

Though the results are weak, we view them as qualitative confirmation for how the Structural

GARCH unlevers the firm. Part of the reason for the standard error of our estimate of f is

that we compute �A
mkt,i at the firm level, and it is well known that betas are more precisely

measured at the portfolio level. In addition, Bekaert and Wu (2001) attribute a portion

of firm-level volatility asymmetry to covariance asymmetry between the market and the

firm’s equity. Our cross-sectional investigation does not include this (or other) potential

explanations, and is outside the scope of this paper. We now turn to using the Structural

GARCH model to measure systemic risk.
24Note that since we are interested in the cross-sectional behavior of �A,i we are not concerned with using

the return on the equity market. If, for example, we used some proxy for a broad market asset market index,
only the magnitude of the coefficient f would change.
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6 Systemic Risk Measurement

Given the unprecedented rise in leverage and equity volatility during the financial crisis of

2007-09, systemic risk measurement is a natural application of the Structural GARCH model.

Consider the following thought experiment: Following a negative shock to equity value, the

financial leverage of the firm mechanically rises. In a simple asymmetric GARCH model

for equity, the rise in volatility following a negative equity return is invariant to the capital

structure of the firm. However, in the Structural GARCH model, the leverage multiplier will

be higher following a negative equity return. Thus, equity volatility will be more sensitive to

even slight rises in asset volatility. In simulating the model, this mechanism would manifest

itself if the firm experiences a sequence of negative asset shocks. Due to asset volatility

asymmetry, a sequence of negative asset returns increases asset volatility. In turn, there may

potentially be explosive equity volatility since the leverage multiplier will be large in this

case. Casual observation of equity volatility and leverage during the crisis clearly supports

such a sequence of events.

6.1 Traditional SRISK

In order to embed this appealing feature of the Structural GARCH model into systemic risk

measurement, we adapt the SRISK metric of Brownlees and Engle (2012) and Acharya et

al. (2012). The reader should refer to these studies for an in-depth discussion of SRISK, but

we will provide a brief summary here. Qualitatively, SRISK is an estimate of the amount of

capital that an institution would need in order to function normally in the event of another

financial crisis. To compute SRISK, we first compute a firm’s marginal expected shortfall

(MES), which is the expected loss of a firm when the overall market declines a given amount
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over a given time horizon.25 In turn, MES requires us to simulate a bivariate process for the

firm’s equity return, denoted rEi,t, and the market’s equity return, denoted rEm,t. The bivariate

process we adopt is described as follows:

rEm,t =

q

hE
m,t"m,t

rEi,t =

q

hE
i,t

⇣

⇢i,t"M,t +

q

1� ⇢2i,t⇠i,t

⌘

= LMi,t�1

q

hA
i,t

⇣

⇢i,t"M,t +

q

1� ⇢2i,t⇠i,t

⌘

("m,t, ⇠i,t) ⇠ F (14)

where the shocks ("m,t, ⇠i,t) are independent and identically distributed over time and have

zero mean, unit variance, and zero covariance. We do not assume the two shocks are in-

dependent, however, and allow them to have extreme tail dependence nonparametrically.26

The processes hE
m,t, h

E
i,t and ⇢i,t represent the conditional variance of the market, the condi-

tional variance of the firm, and the conditional correlation between the market and the firm,

respectively. It is important to note that under the Structural GARCH model, we are really

estimating correlations between shocks to the equity market index and shocks to firm asset

returns. Generically, once the bivariate process in (14) is fully specified, we compute a six

month MES (henceforth LRMES for “long-run” marginal expected shortfall) by simulating

the joint processes for the firm and the market (with bootstrapped shocks) and conditioning

on the event that the market declines by 40 percent. Incorporating the Structural GARCH

model into LRMES is simple. As stated in Equation (14), we simply assume the volatility
25Acharya et al. (2012) provide an economic justification for why marginal expected shortfall is the proper

measure of systemic risk in the banking system.
26See Brownlees and Engle (2012) for complete details.
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process for firm equity returns follows a Structural GARCH model.27 Finally, we assume

that equity market volatility follows a familiar GJR(1,1) process and that correlations follow

a DCC(1,1) model.

Once we have an estimate for the LRMES of a firm on a given day, we compute its capital

shortfall in a crisis as follows:

CSi,t = kDebti,t � (1� k)(1� LRMESi,t)Ei,t (15)

where Debti,t is the book value of debt outstanding on the firm, Ei,t is the market value of

equity, and k is a prudential level of equity relative to assets. In our applications, we take

k = 8 percent and, as is conventional in risk metrics such as VaR, we use positive values

of LRMESi,t to represent declines in the firm’s value. For example, if firm i is expected to

lose 60 percent of its equity in a crisis, its LRMES will be 60 percent. Thus, positive values

of capital shortfall mean the firm will be short of capital in a crisis. Finally, we define the

SRISK of a firm as:

SRISKi,t = max(CSi,t, 0)

The parameters governing the market volatility and firm-market correlation are estimated

recursively and allowed to change daily. However, due to the computational burden of

estimating the Structural GARCH recursively each day, we use the full sample to estimate the

Structural GARCH parameters. In future versions of SRISK measurement with Structural

GARCH, we hope to estimate all parameters of the bivariate process recursively. In the

interest of brevity, we choose to focus on one firm: Bank of America.

To start, Figure 10 plots the LRMES for Bank of America under using both the Struc-
27Efficient simulation of a bivariate Structural GARCH process is, however, not trivial. The MATLAB©

code for this purpose is available from the authors upon request.
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tural GARCH, as well as a vanilla GJR model of univariate returns.

Figure 10: LRMES for Bank of America

Notes: The figure above plots the Long Run Marginal Expected Shortfall of Bank of America. The purple
line uses a standard GJR model for returns. The orange line is the same calculation using the Structural
GARCH model.

It is obvious that the Structural GARCH induces a higher MES than a standard asym-

metric volatility model. The reasons for this pattern are due to the leverage amplification

mechanism built into the model directly. In the low-volatility period from 2004-2007, the

Structural GARCH model delivers a LRMES nearly double the value that comes from a

standard GJR. Even in this period of low leverage, there are negative equity paths in the

Structural GARCH model that result in increases in leverage, which in turn result in higher

volatility, and therefore paths where equity suffers large losses. There is much less of a scope
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for this type of leverage spiral in low volatility/leverage periods in our typical volatility mod-

els. To focus in on the recent financial crisis, we translate our LRMES calculations into

SRISK and plot the resulting series from starting in 2007 in Figure 11.

Figure 11: SRISK for Bank of America

Notes: The figure above plots the SRISK of Bank of America from January 2007 to August 2011. The
units of the y-axis are millions of USD. The blue line uses a standard GJR model for returns. The green line
is the same calculation using the Structural GARCH model.

Figure 11 illustrates why the Structural GARCH model may provide useful in terms of

providing early warning signals of threats to financial stability. The results echo the dynamics

of LRMES under the Structural GARCH specification versus a standard GJR model. As

early as January 2007, the SRISK (using Structural GARCH) of Bank of America starts

to rise and hovers around $20 billion. On the other hand, SRISK derived from a standard
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asymmetric volatility model shows no (expected) capital shortfalls until late 2007 and early

2008. Again, the success of the Structural GARCH along this dimension rests with the

inherent leverage-volatility connection within the model. Qualitatively, the volatility and

leverage link is apparent and has been discussed extensively in the media and the academic

literature. Quantitatively, this link has been hard to pin down. The results in Figure 11

are evidence that the Structural GARCH model is, at very least, a partial resolution of this

issue.

6.2 Structural GARCH and the Probability of Default

While the SRISK framework provides a way to assess the capital deficiencies of financial

firms in a crisis, an alternative way to explore this issue is to ask the following: how likely is

a firm to go bankrupt if crisis occurs? To answer this question, we use the same simulation

machinery as in our SRISK analysis. Namely, for a given date, we condition on the market

falling 40 percent over six months, and then we simulate future return paths of the firm.

We then compute the (conditional) probability of a firm going bankrupt as the proportion

of simulated paths where bankruptcy occurs. Our simulations again use two competing

volatility models for returns: (i) the Structural GARCH and (ii) a standard GJR volatility

model. For the purpose of illustration, we conduct this analysis for Bank of America on

August 29, 2008.

Table 5 contains statistics on Bank of America’s bankruptcy paths over various horizons

and under both models. The connection between volatility and leverage is clearly seen in this

setting as well, as the likelihood of Bank of America going bankrupt is five times higher under

the Structural GARCH model relative to the GJR model. At the end of August 2008, the

Structural GARCH model indicated that Bank of America had a nearly 10 percent chance
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Table 5: Conditional Probability of Default
Structural GARCH Regular GJR

Total # of Paths 453 453
# of Bankruptcies 45 9

Probability of Bankruptcy 9.93% 1.99%
Avg. Time to Bankruptcy 89.4 91.2
Min Time to Bankruptcy 42 57
Max Time to Bankruptcy 126 126

Notes: This table contains basic summary statistics for Bank of America’s simulated bankruptcy paths
starting from August 29, 2008. The simulations are: (i) over a six month horizon; (ii) conducted using the
Structural GARCH and a GJR model; (iii) and are conditional on a drop of 40 percent in the aggregate
market over the same timeframe.

of going bankrupt should a crisis occur over the next six months, whereas the GJR model

suggests only a 2 percent chance of this outcome. This is because the GJR model cannot

hope to capture how leverage increases the future risk of the firm and makes bankruptcy

more likely as the firm’s leverage explodes. In addition, the minimum time to bankruptcy

and the average time to bankruptcy are shorter in the Structural GARCH model, which

is another way of depicting the type of volatility-leverage spirals our model is designed to

encompass.

6.3 A New Measure of Systemic Risk: Precautionary Capital

Based on our preceding analysis of SRISK, it is clear that accounting for the interaction

between volatility and leverage is extremely important. Our model provides a simple way to

capture the nonlinear way in which increasing leverage increases current and future risk to

equity holders, and vice versa. SRISK in one sense asks how much trouble would a financial

firm be in the future if there is another crisis? However, within our framework we can ask a

related, yet slight different, question: how much capital would the firm have to raise today

to ensure they survive another crisis? In other words, our model provides a quantitative way
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to explore potential government policies that trade off between a firm holding precautionary

capital buffers (crisis prevention) and the amount the firm would need should a crisis occur

(bailouts). In our last application of the Structural GARCH model, we propose a new

measure of systemic risk that we call “precautionary capital.”

Let’s start with a simple framework for understanding the core issues. Our ultimate goal

is to think about the difference between today’s equity, and how much equity the firm should

have today to avoid a crisis in the future. Denote today’s actual equity as eE0, and book

value of debt is D0. Suppose further that, because of an equity injection, it is possible to

change today’s equity value from eE0 to a different equity level of E0.

Given initial levels of debt and equity, we then define the likelihood that future equity

value, ET , falls above any positive value x, conditional on a crisis:

f(x;E0, D0) := P(ET � x|crisis) (16)

In general, we allow the function f(·) to depend on the initial value of leverage, i.e. on

E0 and D0. As with SRISK, our conditioning event of a crisis is a 40 percent drop in the

aggregate stock market over the next six months.

If we want the equity to asset ratio to be fixed in a crisis, it must be that:

k =

ET

ET +D0

,

ET =

kD0

1� k

For ease of presentation, define the value of future of equity that meets the capital require-

ment as ET (k,D0) := (kD0)/(1 � k). Unless necessary, we drop the functional dependence
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of ET on k and D0. Next, suppose we want to have some level of confidence, ↵ 2 [0, 1], that

the firm meets a capital requirement of k in a crisis. Using the function f(·), we define the

value E⇤
0 such that:

f(ET ;E
⇤
0 , D0) = ↵ (17)

Finally, we define precautionary capital as the difference between E⇤
0 and the true value of

today’s equity:

PC(k,↵; eE0, D0) := E⇤
0 � eE0 (18)

In other words, precautionary capital measures how much additional capital would need to

be added (or subtracted) to the equity of the firm to ensure, with a level of confidence of ↵,

that it meets its capital requirement in a crisis.

Computing E⇤
0 and PC(k,↵;D0) involves solving a complicated nonlinear root problem.

It requires us to first compute the quantile function of ET as a function of E0 and D0, then

to invert this function to solve for E⇤
0 . The problem is slightly easier when we are in the

GARCH class of models. In this case, the quantile function will be invariant to the initial

leverage of the firm. In the case of the Structural GARCH, the situation is more complicated,

since the future return distribution depends crucially on today’s leverage.

The central idea behind using Structural GARCH in measuring precautionary capital

is precisely that adding equity to the firm today alters the quantiles of the future return

distribution. Because the leverage multiplier is increasing in leverage, reducing leverage

increases the likelihood the firm will meet its capital requirement. The effect is further

enhanced by the fact that the leverage multiplier is concave in leverage. On the other hand,

in a model without the volatility-leverage connection, reducing current leverage will not
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reduce future risk.28

Choosing k In order to compute precautionary capital, we must also select a value of

k that we’d like to ensure the firm meets in the event of a crisis. We choose a capital

requirement of k = 2 percent, which roughly translates to a leverage ratio of 50. The reason

for this particular capital requirement is simple: a leverage ratio of 50 seems to correspond to

when a financial firm ceases its normal function (e.g. Lehman Brothers). Broadly speaking,

the real effects of bank failures seem to take effect when financial firms stop providing their

basic services; thus, k = 2 percent can be thought of as a bankruptcy condition. Obviously,

many different target capital ratios are also defensible.

6.3.1 Example: Bank of America

To make our idea more clear, we compute precautionary capital for Bank of America. For

this particular exercise, we assume we are standing on October 1, 2008. In other words, we

use initial values of D0 and eE0 as if we are at this point in time. Early October 2008 is of

natural interest because it was just before the peak of the financial crises.

In Figure 12, we compute precautionary capital for different confidence levels. The x-axis

in the plot is precautionary capital, or the size of a potential capital injection. The y-axis

describes how likely the firm is to meet a k = 2 percent capital requirement, for each level

of precautionary capital. The curve in blue depicts our calculation of precautionary capital

using a standard asymmetric GARCH model. The curve in green is the same computation,

but uses the Structural GARCH model.

Figure 12 is useful because it allows a regulator to first choose a level of confidence for
28Mathematically, this means that in the Structural GARCH, the function f(·) depends on leverage. In

the GARCH family of volatility models, f(·) does not depend on leverage.
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Bank of America to meet its capital requirement. The regulator can then say how much

capital Bank of America would have needed on October 1, 2008 to be sure it meets this

capital requirement if a crisis should occur in the next six months. For instance, according

to a standard asymmetric GARCH model, in order to be 90 percent sure that Bank of

America would meet a 2 percent capital requirement, we would have needed to inject nearly

$600 billion of equity in October 2008. This number is large because normal GARCH models

ignore the volatility-leverage connection. According to the Structural GARCH model, we

would have needed to add about $220 billion to be 90 percent certain that Bank of America

would meet its capital requirement.

With Structural GARCH, the leverage reduction of holding more capital results in lower

volatility, lower beta and lower probability of failure, a very sensible outcome, but one which

is not present in ordinary volatility models. In lieu of the advantages from reducing leverage,

we believe these results imply that financial firms should be subject to a risk-based capital

adequacy ratio for total leverage. Precautionary capital through the Structural GARCH lens

provides a method to compute this type of capital adequacy ratio in a quantitatively precise

manner.

7 Conclusion

This paper has provided a econometric approach to disentangle the effects of leverage on

equity volatility. The Structural GARCH model we propose is rooted in the classical Merton

(1974) structural model of credit, but departs from it in a flexible yet parsimonious way.

In doing so, we are able to deliver high frequency asset return and asset volatility series.

Our particular econometric parameterization is only one way in which to use the contingent
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claims analysis of Merton (1974) to capture the volatility-leverage connection; however, we

believe the larger contribution of the current paper is to provide a more general framework

through which to approach the problem.

Although we applied the model in two different settings, asymmetric volatility and sys-

temic risk measurement, there are a variety of other settings in which our model can be

used. For example, our analysis has centered on using structural models of credit to un-

derstand equity volatility dynamics; however, structural models of credit also make strong

predictions for the volatility of credit spreads. Our framework may provide a better way to

measure credit spread or credit default swap volatility by using the volatility-leverage con-

nection highlighted in this paper, as well as observable equity shocks. Moreover, since the

Structural GARCH model provides daily asset return and asset volatility series, it should

also improve hedge ratios when looking at the sensitivity of a firm’s debt value to the same

firm’s equity value. In corporate finance, an interesting avenue of research would be to ex-

amine optimal leverage ratios, taking into account the effect that the leverage multiplier has

on equity volatility. In asset pricing, one might explore whether firms with high leverage

multipliers are priced differently than firms with low leverage multipliers. The Structural

GARCH model is an econometric model that can be used to explore all of these ideas.
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A Appendix: The Leverage Multiplier and Assumption
1 Under Different Option Pricing Models

In this appendix, we do three things. First, we add jumps to the asset process. Second, we explore
whether stochatic volatility and/or jumps change the conclusions drawn in the main text regarding
using Equation (9) as a model of equity returns. Finally, we confirm that jumps and stochastic
volatility do not change the general shape of the leverage multiplier, and so our specification remains
flexible enough to be accurate in these settings. Through this exposition, the steps to construct
Figure 3 will also become clear. In order to accomplish these tasks, it will be useful to essentially
start from scratch, and assign a generalized process for assets. As such, the reader may find many
parts repetitive from the main text, but we take this approach for the sake of completeness.

A.1 Motivating the Model
Adding jumps means we re-define the equity value as follows:

Et = f (At, Dt,�A,t, JA, NA, ⌧, rt) (19)

where f(·) is an unspecified call option function, At is the current market value of assets, Dt is the
current book value of outstanding debt, �A,t is the (potentially stochastic) volatility of the assets.
⌧ is the life of the debt, and finally, rt is the annualized risk-free rate at time t. Additionally, JA
and NA are processes that describe discontinuous jumps in the underlying assets. Next, we specify
the following generic process for assets and variance:

dAt

At
= [µA(t)� �µJ ]dt+ �A,tdBA(t) + JAdNA(t)

d�

2
A,t = µv(t,�A,t)dt+ �v(t,�A,t)dBv(t) (20)

where dBA(t) is a standard Brownian motion. �A,t captures time-varying asset volatility. We also
capture potential jumps in asset values via Ja and NA(t). log (1 + JA) ⇠ N

�

log [1 + µJ ]� �

2
J/2,�

2
J

�

and Nt is a Poisson counting process with intensity �. The relative price jump size JA determines
the percentage change in the asset price caused by jumps, and the average asset jump size is µJ . We
assume the jump size, JA, is independent of NA(t), BA(t), and Bv(t). Similarly, the asset Poisson
counting process NA(t) is assumed to be independent of BA(t) and Bv(t). We allow an arbitrary
instantaneous correlation of ⇢t between the shock to asset returns, dBA(t), and the shock to asset
volatility, dBv(t).

The instantaneous return on equity is computed via simple application of Itō’s Lemma for
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Poisson processes:
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dNA(t) (21)

where �t = @f (At, Dt,�A,t, ⌧, r) /@At is the “delta” in option pricing, ⌫t = @f (At, Dt,�A,t, ⌧, r) /@�A,t

is the so-called “vega” of the option, and hXit denotes the quadratic variation process for an arbi-
trary stochastic process Xt. Additionally, EJ

t is the value of equity for an asset jump of JA = J .
Hence, EJ

t is itself a random variable. Once again, we have ignored the sensitivity of the option
value to the maturity of the debt. All the quadratic variation terms are of the order O(dt) and
henceforth we collapse them to an unspecified function q(At,�A,t; f), where the notation captures
the dependence of the higher order Itō terms on the partial derivatives of the call option pricing
function.

The call option pricing function is still monotonically increasing in its first argument, so it is
safe to assume that f(·) is invertible with respect to this argument. We further assume that the
call pricing function is homogenous of degree one in its first two arguments. Define the inverse call
option formula as follows:

At

Dt
= g (Et/Dt, 1,�A,t, JA, NA, ⌧, rt)

⌘ f

�1
(Et/Dt, 1,�A,t, JA, NA, ⌧, rt) (22)

Thus, Equation (21) reduces returns to the following:29

dEt

Et
=

⌘LM
(

Et/Dt,1,�A,t,⌧,rt)
z }| {

�t · g
⇣

Et/Dt, 1,�
f
A,t, ⌧, rt

⌘

· Dt

Et
⇥dAt

At
+
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Et
· d�A,t + q(At,�

f
A,t; f)dt+



E

J
t � Et
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�
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= LM (Et/Dt, 1,�A,t, ⌧, rt)⇥ dAt

At
+

⌫t

Et
· d�A,t + q(At,�

f
A,t; f)dt+



E

J
t � Et

Et

�

dNA(t) (23)

Henceforth, when it is obvious, we will drop the functional dependence of the leverage multiplier on
leverage, etc. and instead denote it simply by LMt. In order to obtain a complete law of motion

29Using the fact that f(·) is homogenous of degree 1 in its first argument also implies that

�t = @f (At, Dt,�A,t, ⌧, r) /@At = @f (At/Dt, 1,�A,t, ⌧, r) /@(At/Dt)

So with an inverse option pricing formula, g(·) in hand we can define the delta in terms of leverage Et/Dt.
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for equity, we use Itō’s Lemma to derive the volatility process:

d�A,t =

⌘s
(

�A,t;µv ,�v)

z }| {

"

µv(t, vt)

2�A,t
� �

2
v(t, vt)

8�

3
A,t

#

dt+

�v(t, vt)

2�A,t
dBv(t)

= s (�A,t;µv,�v) dt+
�v(t, vt)

2�A,t
dBv(t) (24)

Plugging Equations (20), (24) into Equation (23) yields the desired full equation of motion for equity
returns:

dEt

Et
= [LMtµA(t) + s (�A,t;µv,�v) + q(At,�A,t; f)] dt

+LMt�A,tdBA(t) +
⌫t

Et

�v(t,�A,t)

2�A,t
dBv(t) +



E

J
t � Et

Et

�

dNA(t) (25)

Since typical daily equity returns are virtually zero on average, we can continue to ignore the equity
drift term. Instantaneous equity returns then naturally derive from Equation (25) with no drift:

dEt

Et
= LMt�A,tdBA(t) +

⌫t

Et

�v(t,�A,t)

2�A,t
dBv(t) +



E

J
t � Et

Et

�

dNA(t) (26)

Our ultimate object of interest is the instantaneous volatility of equity, but in order to obtain
a complete expression for equity volatility we have to determine the variance of the jump com-
ponent of equity returns. In Appendix B, we derive an easily computed expression, denoted by
VJ
A (JA, NA(t);At), that involves a simple integration over the normal density. Hence, total instan-

taneous equity volatility in this (reasonably) general setting is given by:
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(27)
There are four terms that contribute to equity volatility. The first term relates to asset volatility

and the second relates to the volatility of asset volatility (as well as the sensitivity of the option
to changes in volatility). The third depends on the correlation between assets innovations and
asset volatility innovations. In practice, this correlation is negative. Thus, the middle two terms in
Equation (27) will have offsetting effects in terms of the contribution of stochastic asset volatility to
equity volatility. Finally, the fourth term relates to the volatility of the jump process for assets. In
later sections and also in the Appendix C, we show that we can ignore all but the first term for the
purposes of volatility modeling in our context because, compared to asset volatility, they contribute
very little to equity volatility. Thus, Equation (26) and (27) reduce to a very simple expression for
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equity returns and instantaneous volatility, and is the basis for Assumption 1:
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⇡ LMt ⇥ �A,t (28)

Equation (28) is our key relationship of interest. It states that equity volatility (returns) is a
scaled function of asset volatility (returns), where the function depends on financial leverage, Dt/Et,
as well as asset volatility over the life of the option (and the interest rate). The moniker of the
“leverage multiplier” should be clear now. The functional form for LM(·) depends on a particular
option pricing model, and one of our key contributions is to estimate a generalized LM(·) function
that, in practice, encompasses a number of option pricing models. In order to build further intuition
for the properties of the leverage multiplier, we examine it in three different option pricing models:
Merton (1976), Heston (1993), and Bates (1996).

A.2 The Leverage Multiplier Under Various Option Pricing Models
The purpose of this subsection is twofold. We first aim to show that the approximation in Equation
(28) performs well in a variety of different option pricing models. The main mechanism behind this
approximation is as follows: as the time to maturity of the equity option gets larger, the contribution
of the volatility of volatility (and jumps, if small enough in probability) to equity returns/volatility
is minimal. This is primarily because volatility is mean reverting, and thus “long run” volatility is
effectively constant, so that short run changes in volatility matter little for equity returns. In all of
the option pricing models we consider, we assess the accuracy of this approximation in the same way.
We simply parameterize the model and compute the total volatility of equity, given by Equation
(27), within the model. Then, we compare it with the approximation of (28) within the same model.
This comparison is conducted at debt maturities ranging from one month to twenty years. For each
maturity, we choose the debt level such that the leverage is the same across maturities. For example,
suppose we are examining Option Model A. For each maturity, we search for the debt (strike) such
that debt to equity will be some arbitrary level L. For this debt level, we next compute the total
equity volatility and the approximation under Option Model A; then we repeat this process for
each maturity. We opt to keep leverage consistent across maturities since our empirical work will
focus on financial firms whose leverage tends to be high, despite heterogenous debt maturities. The
leverage level we target is L = 15. Why this number for leverage? For the empirical portion of
our investigation, we examine financial firms. Financial firms typically have high levels of leverage
ranging from 10-20, where leverage is measured as the book value of debt divided by the market
value of equity. When possible, we are also careful to keep parameters consistent across all option
pricing models we consider in order to keep the results comparable.

After we establish the validity of the approximation in Equation (28), we explore how the
leverage multiplier behaves in a variety of option pricing settings. As we will show, Equation (28)
is indeed a useful approximation, and the leverage multiplier takes on a similar shape across many
different models.
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A.2.1 The Heston (1993) Model

In order to justify Assumption 1, we study equity dynamics under the popular Heston (1993)
stochastic volatility model. In this setting, asset volatility evolves as follows:

d�

2
A,t = 

⇥

✓ � �

2
A,t

⇤

dt+ ⌘�A,tdBv(t)

The parameter  determines how quickly volatility mean reverts, ✓ determines the asymptotic limit
of volatility and ⌘ tunes the volatility of volatility.30 This specification of asset returns can be
viewed as a special case of Equation (2).

Validating Assumption 1 Our first task is to analyze how equity volatility is affected by this
particular stochastic volatility model. In this model, it is straightforward from Equation (8) that
the total volatility of equity is given by:
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Let us consider the magnitudes of each of the terms that contribute to equity volatility. The closed
form option pricing formula in this setting was the major contribution of Heston (1993), and the
greeks we are interested in do have closed forms, but we choose to compute them via numerical
derivatives. For the remainder of this subsection, we assume that risk-neutral asset and volatility
processes are specified by the Heston (1993) model, which we parametrize as follows:

Table 6: Heston (1993) Calibration for Risk-Neutral Asset Prices
Parameter Value

 4
✓ 0.15
⌘ 0.15

�A,t 0.15
⇢ -0.5

Notes: This table provides the parameters we use to calibrate the risk-neutral asset return process
under the Heston (1993) model.

Setting  = 4 sets the half-life of the volatility process to be approximately 44 days, which is
roughly the half-life of the GARCH processes we typically encounter in practice.31 Setting ✓ = 0.15

means that long-run asset volatility is 15% in annualized terms, which we adopt to keep consistency
with the analysis in Section 2.2.1 (we also initialize current spot volatility to its long-run average).

30For a more technical description of the properties of this volatility process see Heston (1993) or Cox,
Ingersoll, and Ross (1985).

31The half-life of the volatility process is ln(2)/.
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⌘ = 0.15 makes the volatility of asset volatility to be 15% annually, or equal to the volatility of
assets returns themselves. To the best of our knowledge, this does not contradict known fact.32

Finally, we set the correlation between asset volatility shocks and asset return shocks to be -0.5 in
order to capture the well-known asymmetry in volatility.

Our objective is to show that under the Heston (1993) specification, it is perfectly reasonable
to ignore the terms in Equation (8) that are related to stochastic asset volatility. The argument
for ignoring the stochastic portion of asset volatility in terms of its contribution to equity volatility
hinges on the idea that for longer maturity debt, the volatility of asset volatility contributes very
little to equity volatility. Thus, under the current parameterization of the Heston (1993) model, we
plot the total instantaneous equity volatility against maturity in Equation (29) against maturity.
In addition, we plot instantaneous equity volatility under Assumption 1.33 Figure 13 provides a
visualization of the results:

32In fact, this may even be too large. As assets are much less volatile than equity, so one might expect
the volatility of asset volatility to be smaller than the volatility of equity volatility as well.

33For each maturity, we search for the debt (strike) such that debt to equity will be some arbitrary level
L. For this debt level, we next compute the total equity volatility and the approximation under the Heston
(1993) model; then we repeat this process for each maturity. We opt to keep leverage consistent across
maturities since our empirical work will focus on financial firms whose leverage tends to be high, despite
heterogenous debt maturities. The leverage level we target is L = 15. Why this number for leverage? For
the empirical portion of our investigation, we examine financial firms. Financial firms typically have high
levels of leverage ranging from 10-20, where leverage is measured as the book value of debt divided by the
market value of equity.
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Figure 13: Equity Volatility Analysis in Heston (1993) Model
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Notes: The blue line in this figure plots the total (true) volatility of equity if assets follow the Heston (1993)
model. The red line in this figure plots the volatility of equity if it is approximated according to Equation
(9). For each time to maturity, we set At = 1 and choose the level of debt such that financial leverage is
approximately 15. For this analysis, the risk-free rate is set to 0.03.

As should be clear, the assumption underlying Equation (9) is quite reasonable in terms of
capturing total equity volatility. The reason is due entirely to the mean-reversion property of asset
volatility. Because asset volatility mean reverts quickly relative to the life of the debt, the “vega” of
equity is very small. To see this point more forcefully, consider equity returns (with zero drift) if
assets follows the Heston model:

dEt

Et
= LMt�A,tdBA(t) +

⌘⌫t

2Et
dBv(t)

How big is each term multiplying the shocks in this model? Staying with the parameters in Table
6, we plot both below:
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Figure 14: Equity Return Analysis in Heston (1993) Model
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Notes: The blue line in this figure plots the how much asset return shocks are magnified into equity shocks.
The red line in this figure plots how much volatility shocks are amplified into equity shocks. For each time
to maturity, we set At = 1 and choose the level of debt such that financial leverage is approximately 15. For
this analysis, the risk-free rate is set to zero.

Clearly, the contribution of volatility shocks to equity returns is minimal. This result shouldn’t
be surprising as it is essentially a restatement of the conclusion reached from Figure 13.34

The Leverage Multiplier in the Heston (1993) Model Now that we have established
that the leverage multiplier is the key determinant of equity dynamics in this stochastic volatility
environment, we turn to a more careful analysis of the actual shape of the leverage multiplier.
Figure 15 plots the leverage multiplier (for debt of maturity ⌧ = 5) against leverage as we did in
the BSM case:

34Hence, we arrive at the previously assumed process for equity returns, even in a stochastic volatility
environment:

dEt

Et
= LMt ⇥ �A,tdBA(t)

This isn’t to say that the volatility of volatility terms do not matter. They matter quite a bit for the level

of equity, but not so much for the returns.
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Figure 15: Leverage Multiplier in Heston (1993) Model
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Notes: We plot the leverage multiplier in the Heston (1993) stochastic volatility model against leverage.
The time to maturity is set to five years and the remaining model parameters are given in Table 6. For this
analysis, the risk-free rate is set to r = 0.03.

The shape of the leverage multiplier under stochastic volatility is quite similar to the BSM
case. The most obvious difference is the concavity of the stochastic volatility leverage multiplier.
When moving from low levels of leverage (e.g. 2-3) to intermediate levels of leverage (e.g. 5-7)
the leverage multiplier rises rapidly as compared to the BSM baseline. In addition, the level of
the stochastic volatility leverage multiplier is higher than the BSM counterpart. Because of the
negative correlation between asset returns and asset volatility, the future asset return distribution
has negative skewness. In turn, leverage has strong effects on equity returns and volatility since the
option value of equity is less likely to expire in the money. This intuition is also consistent with
the results of section 2.2.3, where we use Monte Carlo simulation to explore models with stochastic
volatility and non-normal shocks.

A.2.2 Analysis of the Leverage Multiplier under Merton’s (1976) Jump-Diffusion
Model

Another strand of option pricing models in the literature began with the seminal work of Merton
(1976), henceforth MJD. In this formulation, the stock returns follow a standard geometric Brownian
motion, appended with a continuous time Poisson jump process. Again, this case is encompassed by
the specification in Equation (26), but we turn off the stochastic volatility channel (i.e. �A,t = �A)
and allow only for jumps. In this setting, equity return dynamics from (26) reduce to the following
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jump-diffusion:
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Similarly, the volatility of equity returns reduces to the following:
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where again the expression for VJ
A (JA, NA(t);At) is found in Appendix B. The key insight of MJD

model was that, even though dynamic riskless hedging is impossible with discontinuous sample
paths, if individual stock jumps are independent of the prevailing pricing kernel then their presence
is an “unpriced” risk and typical hedging arguments can still be applied. Merton (1976) solves for
the closed form option pricing solution, which turns out to be a weighted average of BSM prices,
with the weights determined by the likelihood of a given number of jumps over the life of the debt.35

Our analysis of his solution begins with an assessment of the approximation in Equation (28).

Validating Assumption 1 In order to do so, we first parameterize the MJD model as follow:

Table 7: Merton (1976) Calibration for Risk-Neutral Asset Prices
Parameter Value

� 0.01
µJ -0.1
�J 0.2

Notes: This table provides the parameters we use to calibrate the asset return process under the Merton
(1976) model.

In this case, the average jump size (µJ) means that when a jump occurs, the asset value falls
by 10%, and has a dispersion (�J) of 20%. Jumps happen at an annualized frequency of �, which
means there are roughly two expected days per year with jumps for assets returns. In addition, it
is well known that the total instantaneous volatility of assets is given by:
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Thus, in order to keep the analysis comparable to the baseline BSM case, we set �A,t = �A such
that the total annualized asset volatility is 15%. Using only the leverage multiplier to compute
equity volatility (i.e. ignoring volatility added by jumps) is visualized in the following plot:

35To use the exact Merton (1976) formula in our context, set the mean of the “Merton Jump”, which is
log-normal to µM = log(1 + µJ)� �

2
J/2 in the specification we outline for jumps. The variance is the same.
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Figure 16: Accuracy of Volatility Approximation in Merton (1976) Model
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As is evident from Figure 16, adding jumps to the asset return process has a very small effect
on overall equity volatility. The variance of the entire jump process, JAdNA(t), is largely dictated
by the variance of the Poisson counting process, which is �. Therefore, for reasonable jump arrival
intensities, the variance contribution of jumps to equity volatility will be small in magnitude.36

Now that we have established that approximating equity volatility by Equation (28), we turn our
attention to understanding the properties of the leverage multiplier in this context.

The Leverage Multiplier in the Merton (1976) Model We study the properties of the
Merton (1976) leverage multiplier by varying the jump intensity �. Again, in order to make these
results comparable to the benchmark BSM analysis, we always set �A such that the annualized
total volatility of assets is 15%. In addition, we vary the time to maturity of the debt. The leverage
multiplier for these different cases is as follows:

36In the Online Appendix, we repeat this analysis for other parameterizations and find the conclusions to
be robust.
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Figure 17: Leverage Multiplier in Merton (1976) Jump-Diffusion Model
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Note: This figure plots the leverage multiplier in the MJD model. Annualized jump intensity takes on one of
two values � 2 {0.01, 0.15}. The time to maturity of the debt also takes on two possible values ⌧ 2 {5, 10}.
The annualized risk-free rate is r = 0.03.

The economic underpinnings of the leverage multiplier in the MJD case are, unsurprisingly,
quite similar to the BSM case. Holding time to maturity constant, when we decrease the likelihood
of a jump, the leverage multiplier also decreases. Since jumps are assumed to decrease the asset
value, then a lower likelihood of a jump means the equity is more likely to finish in the money and
the effect of leverage on equity volatility is dampened. Holding the likelihood of a jump constant,
when we increase the time to maturity, the leverage multiplier increases. In this case, the diffusion
portion of assets dominates the negative jump component (due to the parameter values we chose).
Adding maturity to the debt therefore means the equity is more likely to expire with value and so
leverage means less for equity volatility. It is likely that for large jump intensities (or large jump
sizes) this effect would reverse, but this type of parameterization seems empirically implausible.

A.2.3 Analysis of the Leverage Multiplier with Stochastic Volatility and Jumps

By now it should be clear that the leverage multiplier takes roughly the same form across different
option pricing models; however, for completeness, we conduct one last exploration of the leverage
multiplier shape when assets have both stochastic volatility and are subject to jumps (henceforth
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SVJ). The risk-neutral asset return dynamics are thus described as follows:

dAt
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= [r � �µJ ]dt+ �A,tdBA(t) + JdNA(t)
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where the jump process for assets retains its original properties as in Equation (20). The closed
form solution for option prices under these dynamics is also well-known at this point (e.g. Bakshi,
et al. (1997)). We calibrate the model by combining previous parameterizations and repeat them
here:

Table 8: Parameters for Stochastic Volatility with Jumps Model
Parameter Value

 4
⌘ 0.15

�A,t 0.15
⇢ -0.5
� 0.01
µJ -0.1
�J 0.2

Notes: This table provides the parameters we use to calibrate the risk-neutral asset return process under
the SVJ model used by, among others, Bates (1996) and Bakshi et al. (1997).

The long run average for volatility, ✓, set such that the total long run average asset volatility
is 15%. As usual, we begin by checking whether the approximation in Equation (28) holds in this
setting.

Validating Assumption 1 Figure 18 plots the total equity volatility in the SVJ model against
the approximate equity volatility given by (28) for differing maturities and constant leverage:
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Figure 18: Equity Volatility Analysis in SVJ Model
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Notes: The blue line in this figure plots the total (true) volatility of equity if assets follow the SVJ model
(e.g. Bakshi et al. (1997)). The red line in this figure plots the volatility of equity if it is approximated
according to Equation (28). For each time to maturity, we set At = 1 and choose the level of debt such that
financial leverage is approximately 15. For this analysis, the risk-free rate is set to 0.03.

At this point, it should not be so surprising that our approximation holds reasonably well.
Simply put, for reasonable jump arrival intensities and quickly mean-reverting volatility processes,
the main component of equity volatility is asset volatility itself (amplified by the leverage multiplier).

The Leverage Multiplier in the SVJ Model Similarly, Figure 19 plots the leverage mul-
tiplier in the SVJ model:
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Figure 19: Leverage Multiplier in SVJ Model
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Notes: We plot the leverage multiplier in the SVJ model against leverage. The time to maturity is set to
five years and the remaining model parameters are given in Table 8. For this analysis, the risk-free rate is
set to r = 0.03.

As expected, the leverage multiplier in the SVJ cases is the highest for high levels of leverage.
The intuition from the BSM model still applies: high leverage means the equity is very likely to
expire out of the money for a couple of reasons. First, because volatility and asset return shocks are
negatively correlated, the distribution of future asset returns has negative skewness, thus making
high levels of leverage even more paralyzing in terms of equity finishing with value. The second
reason is due to jumps, which we assume to be negative on average. Together, both factors contribute
to a higher equity volatility amplification mechanism when leverage becomes too high. Still, the
general shape of the leverage multiplier seems consistent across all of the option pricing models, and
we therefore confirm that the results from the main text remain valid.
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B Appendix: Total Volatility of Equity in Stochastic Volatil-
ity with Jump Environment

We need to compute the variance of the following term:
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where we use the independence of NA(t) and JA. To make the dependence of equity value on the
asset jump more explicit, we replace E

J
t with the call option pricing function, but we suppress all

but the first argument for notional convenience:
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Here, the second line uses the independence of NA(t) and JA, and the third line uses the standard
variance definition for a Poission process.37

 (·) and �(·) are given by:
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where hY (y) is the pdf of a normal random variable with mean log [1 + µJ ]��2J/2 and variance �2J .
In practice, VJ

A (JA, NA(t);At) is easily computed numerically.

37i.e.
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C Appendix: Empirical Argument for Ignoring Volatility
Terms

For exposition, we repeat Equation (3):
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It is straightforward to work out that equity variance will be as follows:
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pricing lingo, �t is the “delta” of the call option on assets, and ⌫t is the “vega” of the call option
on assets.38 In the model where we set the long run volatility of assets to be the unconditional
volatility of the asset GJR process, this analysis is moot as d�

f
A,t = 0. Our task now is to show

that the last two terms are negligible for the purposes of modeling equity volatility, when we use
the GJR forecast for long run asset volatility.

C.1 Magnitude of Volatility Terms
In the language of the Structural GARCH model we can simply substitute LMt into Equation (31)
where it is appropriate:
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In order to investigate the magnitude of the terms we ignore (i.e. any term containing ⌫t), we need
a functional form for the sensitivity of the equity value to changes in long run asset volatility. Since
we are only interested in magnitudes, we will use the Black-Scholes vega. It is unlikely that the
Black-Scholes vega is incorrect by an order of magnitude, so for this exercise it will be sufficient.
The next thing we need in order to quantitatively evaluate Equation (32) are time-series for LMt,
dAt/At, and d�

f
A,t. To be precise, if we extended the model to include changes in volatility we would

undoubtedly obtain different estimates for these three quantities. Again, since our goal is to assess
38To be precise, these are the delta and vega of the option where debt has been normalized to 1.
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relative magnitudes, we will simply use the values delivered by our Structural GARCH model for
LMt, dAt/At, and d�

f
A,t. Formally, we define d�

f
A,t as:

d�

f
A,t =

q

h

f
A,t+1/⌧ �

q

h

f
A,t/⌧

where h

f
A,t+1 is the forecast of total volatility over the life of the option. Finally, we set the volatility

of volatility to be constant and the correlation between asset returns and volatility to be constant.
Under this assumption, we estimate these quantities using their in-sample moments.

C.1.1 Case Study: JPM

As an example, we study JPM. Table 9 are the in-sample moments of the estimated stochastic
volatility process:

Table 9: Moments for Volatility Forecast Innovations
Variable Value

r

vart

⇣

d�f
A,t

⌘

4.9737e-04

⇢t

⇣

dAt
At

, d�f
A,t

⌘

-0.427

Unsurprisingly, there is a strong negative correlation between the innovation to the long run
asset volatility forecast and asset returns. In addition, the extremely small volatility of volatility
provides us our first piece of supporting evidence in favor of ignoring the additional vega terms.
Next, we plot each of the three terms from Equation (32):
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Figure 20: Decomposition of Equity Variance for JPM
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Notes: The figure above plots each time series for each of the three terms in Equation (32). The blue line
represents the first term, containing LM

2
t . The red line is the second term, and contains only vart(d�

f
A,t).

Finally, the green line is last covariance term.

Figure 20 confirms our assumption that including d�

f
A,t has a small effect on our main volatility

specification. Moreover, it is clear from Equation (32) that any additional volatility of volatility
that contributes to equity volatility will be offset by the negative correlation between asset volatility
and asset returns. On average, the variance arising from our standard leverage multiplier term is
approximately 12 times larger (in absolute value) than the sum the additional terms due to vega.
Furthermore, the leverage multiplier term dominates the vega terms in times of high volatility,
which tend to be our main areas of interest. Thus, we conclude that we can ignore the additional
vega terms within the context of our Structural GARCH model.
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D Data Appendix

D.1 List of Firms Analyzed

Table 10: List of Firms Analyzed

ABK CBSS HRB SAF
ACAS CFC HUM SEIC
AET CI JNS SLM
AFL CIT JPM SNV
AGE CMA KEY SOV
AIG CNA LEH STI
ALL COF LNC STT
AMP CVH MBI TMK
AMTD ETFC MER TROW
AON ETN MET TRV
AXP EV MI UB
BAC FITB MMC UNM
BBT FNF MS USB
BEN FNM MTB WB
BK FRE NCC WFC
BLK GNW PBCT WM
BOT GS PFG WRB
BSC HBAN PGR ZION
C HCBK PNC
CB HIG PRU
CBH HNT RF

D.2 Outlier Cases
Compared to the estimation done on 11/11/2013, there were a few firms that had name changes.
To avoid issues with data quality, we throw these out. This leaves us with a total of 82 firms. There
are 10 firms that hit the lower bound: SCHW:US, JNS:US, LM:US, BK:US, BLK:US, NTRS:US,
CME:US, CINF:US, TMK:US, UNH:US.
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Figure 12: Precautionary Capital: Bank of America on 10/1/2008
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Notes: The figure above plots, for Bank of America, the likelihood of meeting a capital requirement against
precautionary capital . The simulation date is on October 1, 2008. The debt level of the firm is $1.6701
trillion. The true value of equity for the firm on this date is $173.87 billion. The simulation horizon is six
months. Each set of simulations is conditioned on a drop of 40 percent in the aggregate stock market, and
the same set of market and firm shocks is used for each simulation set — the only difference is starting
leverage.
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