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Abstract

This paper develops a method for selecting and analyzing stress scenarios for financial risk
assessment, with particular emphasis on identifying sensible combinations of stresses to multiple
factors. We begin by focusing on reverse stress testing — finding the most likely scenarios leading
to losses exceeding a given threshold. We approach this problem using a nonparametric empirical
likelihood estimator (in the sense of Owen (2001)) of the conditional mean of the underlying
market factors given large losses. We then scale confidence regions for the conditional mean
by a coefficient that depends on the tails of the market factors to estimate the most likely loss
scenarios. We provide rigorous justification for the confidence regions and the scaling procedure
in three models of the joint distribution of the market factors and portfolio loss with qualitatively
different tail behavior: multivariate normal (light-tailed), multivariate Laplace (exponentially
tailed), and multivariate-t (regularly varying). The key to this analysis (and the differences
across the three cases) lies in the asymptotics of the conditional variances and covariances
in extremes. These results also lead to asymptotics for marginal expected shortfall and the
corresponding variance, conditional on extreme losses; we combine these results with empirical
likelihood significance tests of systemic risk rankings based on marginal expected shortfall. For
the problem of selecting macro stress scenarios, we apply our results to estimate the most likely
outcome for other variables given a stress in one variable, and thus to gauge the plausibility
of particular combinations of stresses to financial and economic factors. Finally, we develop a
scenario sampling method, suggested by the empirical likelihood contours, for exploring regions
of large losses in generating stress scenarios.

1 Introduction

Stress testing has long been part of the risk management toolkit, but it has gained new prominence

through the recent financial crisis. This is reflected, for example, in the impact of the Supervisory

Capital Assessment Program conducted by U.S. financial regulators in 2009 (Hirtle et al. [16]), the

subsequent Comprehensive Capital Assessment Reviews in 2010 and 2011 (see [5]), the correspond-

ing stress tests undertaken by the European Banking Authority, the stress testing requirements in

the Dodd-Frank Act, and greater use of stress testing for internal risk management reported in

industry surveys ([15, 19]).
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Stress testing seeks to evaluate losses in extreme yet plausible scenarios that may be under-

weighted in a probabilistic model of market movements and absent from a historical backtest. An

important challenge in designing effective stress tests lies in selecting scenarios that are indeed both

sufficiently extreme and sufficiently plausible to improve risk management. Recent research and

recommendations on stress testing include Alfaro and Drehmann [2], Breuer et al. [7], Financial

Services Authority [12], Flood and Korenko [13], Pritsker [22], Quagliarello [23], Rebonato [24],

and Schuermann [26]. Borio et al. [6] provide a critical review of current practice.

Our objective in this article is to develop a data-driven procedure to inform the selection of

scenarios that are both extreme and plausible. Our primary focus is on reverse stress testing,

which seeks to identify scenarios that result in losses exceeding a given magnitude for a particular

portfolio or firm. Because many different combinations of movements of market factors can produce

losses of similar magnitude, we formulate the goal of reverse stress testing more precisely as one

of identifying the most likely scenario or scenarios among all such combinations. These scenarios

are, by definition, of primary importance to a particular portfolio, whereas purely hypothetical

scenarios often seem arbitrary and their consequences therefore difficult to interpret. With a single

risk factor, it may be relatively clear in which direction and even by how much to stress the factor

to get a plausible adverse outcome, but identifying a sensible combination of stresses to multiple

factors requires further analysis. This is one of the main challenges in defining stress scenarios.

We view the selection of stress scenarios as an exploratory process. Reliance on a single scenario

— even the most likely one — is potentially misleading, so our objective is to identify important

regions of stress scenarios, where importance reflects both the likelihood of the outcome and the

severity of the resulting loss. These regions should be anchored in the available data, though data

on extreme outcomes is necessarily limited. We also want to be able to draw scenarios from the

important regions in a way that is consistent with the available data.

We approach the problem of identifying reverse stress testing regions in two steps. First, we

estimate the conditional mean of the underlying market factors given a portfolio loss exceeding a

specified level. Then we scale the conditional mean by a multiplier that depends on the tails of the

market factors to correct for the ratio of the conditional mean to the most likely loss scenario.

For the first step, the estimation of the conditional mean, we use an empirical likelihood estima-

tor, in the sense of Owen [21]. Empirical likelihood (EL) is a nonparametric estimation procedure

through which we get confidence regions for the conditional mean. Importantly, the EL estimator

does not rely on significant assumptions about the conditional distribution of the market factors

in extremes. The shape of the resulting confidence regions is able to capture skewness and other

features present in extreme outcomes.
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For the second step in our procedure — scaling the conditional mean — we derive asymptotically

exact scaling multipliers in three special but important models of the joint distribution of market

factors and portfolio value: multivariate normal, multivariate Laplace, and multivariate t. These

represent three fundamental cases in the sense that the normal distribution has very light tails, the

Laplace distribution has tails that decay exponentially, and the t distribution has regularly varying

tails; the second and third cases are particularly relevant to market data. In all three cases, we

provide rigorous justification for the scaling factor we derive and for the combination of the scaling

factor and the EL estimator; this combination yields asymptotically valid confidence regions for the

most likely scenario leading to losses exceeding a given magnitude. We also apply this procedure

to examine how conditioning on a stressed value for one variable affects the levels of other variables

to gauge the consistency and relative severity of a set of stresses.

As part of this analysis, we derive results for the conditional variances and covariances of the

underlying market factors given an extreme move by one factor. These results illustrate qualitative

differences between the normal, Laplace, and t cases and thus connect the tail behavior of market

factors with conditional moments in extreme scenarios.

As a further application of these ideas, we analyze marginal expected shortfall (MES) and a

corresponding marginal variance of shortfall (MVS). These are conditional moments in a stress

scenario. In particular, MES measures the expected loss in part of a portfolio conditional on a

stress to the full portfolio. It has also been proposed as a measure of systemic risk when applied

across firms rather than across parts of a single portfolio. We show how MES and MVS change

under the alternative multivariate models we consider — the normal, Laplace and t distributions.

In particular, our analysis shows how the variability in MES estimates depends on the heaviness

of the tails of market risk factors. Large variance values suggest the potential for a high degree

of variability in MES estimates. With this in mind, we apply EL confidence regions to test the

significance of systemic risk rankings in Acharya et al. [1]. The tests suggest that the top 50

companies rank roughly equally, as measured by MES, and that the difference between this group

and the 100th ranked company is highly significant. Our approach takes into account the limited

data available in extreme stress scenarios.

After providing a precise estimation procedure for reverse stress testing and analyzing condi-

tional means and covariances in extremes, we use similar ideas to draw scenarios from regions of the

factor space leading to large losses. In principle, one would want to draw scenarios from the condi-

tional distribution given a large loss, but characterizing extreme conditional distributions remains

notoriously difficult (as in Balkema and Embrechts [3]). We use a mechanism suggested by the EL

confidence regions. Our approach generates random weight vectors and uses these to take weighted
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combinations of past extreme scenarios to generate new scenarios in important large-loss regions.

This produces new scenarios that are guided by past extreme combinations of factor moves; the

procedure is able to capture the shape of the empirical distribution of extreme scenarios.

We illustrate our procedures on two types of data. First, we use returns on a set of world equity

indices and currencies as examples in which data is plentiful, and we use this data for our reverse

stress testing procedure. We then apply our procedures to a mix of economic and financial variables

drawn from the 2012 Comprehensive Capital Analysis and Review [5]; this is the Federal Reserve’s

stress test for large bank holding companies.

The rest of this paper is organized as follows. Section 2 introduces reverse stress testing through

the simple case of a normal distribution. Section 3 introduces empirical likelihood estimation,

and Section 4 converts estimates of conditional means to estimates of most likely loss scenarios.

Section 5 presents the application to equity and currency portfolios. Section 6 presents our results

on conditional extreme moments and applies these to analyze marginal expected shortfall and a

corresponding variance. Section 7 considers some of the CCAR variables and scenarios. Section 8

presents the sampling algorithm. Proofs are deferred to an appendix.

2 The Reverse Stress Testing Problem

Let Z be a random d-dimensional vector representing the changes in relevant market factors —

rates, prices, and economic variables. Suppose Z has a probability density f on Rd. For a given

portfolio exposed to these market factors, let (Z, L) have the joint distribution of the factors and

the portfolio loss L. Write f(z|L ≥ `) for the conditional density of Z given L ≥ `, assuming it

exists. The generic problem of reverse stress testing, for a loss threshold `, is to find the most likely

scenario (or scenarios) given a loss greater than or equal to `; in other words,

(RST) max
z∈Rd

f(z|L ≥ `).

We refer to a solution of this problem as a most likely loss scenario or as a solution to the reverse

stress test. This is called the “design point” in De and Tamarchenko [9] and Koyluoglu [17], based

on an analogy with structural reliability.

To help fix ideas, we consider the simple setting of normally distributed market factors, Z ∼
N (µ, Σ), Σ > 0. Suppose that the portfolio loss is given by a linear function of the factors, L = c>Z

for some c ∈ R
d, in which case (Z, L) are jointly normal. Maximizing f is equivalent to minimizing

− log f , so problem (RST) reduces to

min
z∈Rd

(z− µ)>Σ−1(z− µ) subject to c>z ≥ `.
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This problem is easily solved and has the explicit solution

z∗(`) = µ +

(

` − c>µ

c>Σc

)

Σc. (1)

We can also write this as

z∗(`) = µ + b∗(` − c>µ), (2)

with b∗ = Σc/c>Σc. Thus, in the case of normally distributed factors and a linear loss function,

the most likely loss scenario is the conditional mean z∗(`) = E[Z|c>Z = `].

3 Empirical Likelihood Estimation of the Conditional Mean

To move away from reliance on specific distributional assumptions, we adopt a nonparametric

approach. Our objective remains to find the solution to (RST), but as an intermediate step we

first focus on estimating E[Z|L ≥ `], the conditional mean of the factors given a large loss. In the

setting of (2), the conditional mean overestimates the most likely loss scenario, and it is easy to see

that this will typically be the case under modest restrictions on the density f .To offset this effect,

we will derive a scaling correction based on the tail decay of Z.

But first we need to estimate the conditional mean. We assume we have observations (zi, Li),

i = 1, 2, . . . , of past scenarios zi and corresponding losses Li. From these, we discard all observations

except those for which the loss is at least `. Through appropriate re-indexing, we are left with n

observations (z1, L1), . . . , (zn, Ln), all of which have Li ≥ `. Clearly, this requires that ` not be so

large that losses of at least ` have never been observed. To get to yet more extreme values of `,

one might estimate the conditional means E[Z|L ≥ `j] at a sequence of increasing values of `j and

then try to extrapolate.

Once we have culled those observations for which Li ≥ `, the original problem of estimating a

conditional mean reduces to once of estimating an unconditional mean. For this problem, we apply

Owen’s [21] empirical likelihood (EL) method. This method considers convex combinations of the

observations as candidate estimates of the mean:

w1z1 + w2z2 + · · ·+ wnzn,

n
∑

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n,

The profile empirical likelihood associated with a candidate value x is

R(x) = max

{

n
∏

i=1

nwi :

n
∑

i=1

wizi = x,

n
∑

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n

}

. (3)

The product inside the braces is the likelihood ratio of the probability vector (w1, . . . , wn) to the

uniform distribution (1/n, . . . , 1/n); R(x) is larger when x is a more uniform convex combination

of the weights on the observations.
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Suppose that the observations are i.i.d. with mean µ0, and suppose that the convex hull of the

observations contains µ0 with probability approaching 1 as the number of observations increases.

Then Owen’s [21] Theorem 3.2 states that −2 logR(µ0) has an asymptotic χ2
d distribution for large

n. This provides the basis for EL confidence regions: Fix a confidence level 1 − α and find the

quantile xα for which P(χ2
d ≥ xα) = α; the corresponding 1 − α confidence region for µ0 is the set

C1−α,n =

{

n
∑

i=1

wizi :

n
∏

i=1

nwi ≥ exp(−xα/2),

n
∑

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n

}

. (4)

As discussed in Owen [21], the maximization problem defining the profile empirical likelihood

is easy to solve by first reformulating it as

max
w1,...,wn

n
∑

i=1

log wi subject to

n
∑

i=1

wi = 1,

n
∑

i=1

wizi = x.

The resulting confidence regions are appealing, if n is not too small, because they make minimal as-

sumptions about the distribution of the underlying data and are able to capture skewness and other

notable shape characteristics in the data. Before presenting examples, we examine the connection

between the conditional mean estimated here and the most likely loss scenario.

4 From Conditional Mean to Most Likely Loss Scenario

4.1 Multivariate Models

Recall that our objective is to estimate the solution z∗(`) to the reverse stress testing problem

(RST), and in the previous section we have estimated a conditional mean E[Z|L ≥ `], which we

denote by z̄(`). The next step is therefore to relate these quantities. We will do so under the

assumption that the loss level ` is large and that the joint distribution of the market factors and

the portfolio loss is multivariate normal, Laplace, or t.

The multivariate distributions we consider admit the representation

Y = µ + X, X =
√

WN (0, Σ), (5)

with N (0, Σ) representing a normal random vector with mean zero and covariance Σ, W a mixing

random variable independent of the normal vector, and µ a constant mean vector. In other words,

these are translated scale mixtures of normals, and they belong to the family of elliptically contoured

distributions. The Laplace distribution has W exponentially distributed with mean 1/λ, and the t

distribution with ν degrees of freedom has 1/W = χ2
ν/ν, a chi-square random variable normalized

by its degrees of freedom parameter. The normal case itself corresponds to W ≡ 1.
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These three cases represent three distinct classes of tail behavior for P(Xi ≥ x) and P(Xi ≤ −x),

for large x. The normal tail is very light, with order O(e−ax2

/x), for some a > 0; the Laplace tail

is exponential, with order O(e−ax), for some a > 0; and the tν tail is regularly varying, with order

O(x−ν). Thus, these three distributions capture a key distinction in models of the extreme behavior

of market factors, with the last case the most relevant in most applications.1 These cases also have

qualitatively different tail dependence, with the multivariate normal having no tail dependence

(except when perfectly correlated), the multivariate t exhibiting positive tail dependence even

with negative correlation (except when perfectly negatively correlated); see Schmidt [25]. The

mixture representation in (5) and the associated tail behavior can be interpreted as the result of

heteroskedasticity or stochastic volatility in a dynamic model.

For our theoretical results, we will assume that the joint distribution of (Z, L), the market

factors and the portfolio loss, belongs to one of these three families of distributions. This assumes,

in particular, that the tail decay of the portfolio loss coincides with that that of the underlying

factors. We do not assume that L is a deterministic function of Z. We may think of Z as recording

the most important factors influencing the portfolio, and then the model assumes that the tail

behavior of the portfolio loss matches that of the most important factors. We will always assume

that the restriction of Σ to the d×d covariance matrix of Z is positive definite, so that none of factors

is redundant. This is sufficient to ensure that the most likely loss scenario z∗(`) is well-defined.

4.2 Estimation

We now turn to the problem of estimating the most likely loss scenario through the conditional

mean, beginning with the following result.

Proposition 1 Suppose the joint distribution of (Z, L) is multivariate normal, Laplace or tν , ν >

1. Let z∗(`) ∈ R
d be the most likely loss scenario and let z̄(`) ∈ R

d denote the conditional mean

E[Z|L ≥ `]. Then there exists a positive scalar sequence κ` such that

z∗(`) = κ`z̄(`), and κ` → κ as ` → ∞, (6)

where

• κ = 1 for a multivariate normal or Laplace distribution;

• κ = (ν − 1)/ν for a multivariate tν distribution.

1However, Heyde and Kou [14] show that it is quite difficult to distinguish t tails from Laplace tails empirically.
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Based on this result, we can estimate the most likely loss scenario z∗(`) by estimating the

conditional mean z̄(`) and then scaling the result as needed. In the normal and Laplace cases, no

scaling is needed; in the tν case, we multiply the estimate of the conditional mean by (ν − 1)/ν

asymptotically to estimate the most likely loss scenario. Market data is often well approximated

with ν in the range of 5–7, corresponding to scale factors in the range of 0.80–0.86. In addition to

scaling the point estimate, we would like, more importantly, to scale the confidence regions for z̄(`)

to get confidence regions for z∗(`). Such a procedure involves two limits, because Proposition 1

applies as ` → ∞ whereas the chi-square limit that underpins the EL method holds as the number

of observations grows. For a combined result, we therefore need an array version of the EL limit

theorem, building on Owen’s [21] Theorem 4.1.

In the following, we let Z1(`), Z2(`), . . . , Zn`
(`) denote i.i.d. observations from the conditional

distribution of Z given L ≥ `, with n` → ∞. As before, let xα be the quantile defined by

P(χ2
d ≥ xα) = α. Write R`(x) for the profile empirical likelihood in (3) with n = n`. For a

set C ⊆ Rd and a constant κ, κC denotes the set of points of the form κx with x ∈ C.

Theorem 1 Under the multivariate normal, Laplace or tν distribution, ν > 4,

−2 logR`(z̄(`)) = −2 logR`(κ
−1
` z∗(`)) → χ2

d

in distribution, and κ`C1−α,n`
is an asymptotic 100(1 − α)% confidence region for the most likely

loss scenario z∗(`); i.e.,

P(z∗(`) ∈ κ`C1−α,n`
) → 1− α,

as ` → ∞, where κ` → κ, with κ as in Proposition 1.

This result leads to the following procedure. As in Section 3, we extract the large loss scenarios

from the available data. Using these observations, we construct EL confidence regions (4) for the

conditional mean z̄(`). We then scale the confidence regions by the factor κ` to get confidence

regions for the most likely loss scenario z∗(`). As a simplifying approximation, one could use the

limiting value κ in place of κ`.

We have described this procedure through its application to historical data. The same approach

could be used with simulated data. In some settings — stress testing an entire bank portfolio, for

example — fully evaluating each scenario is extremely time-consuming. A simplified model could

then be applied to simulated scenarios from which one would then estimate the most likely loss

scenarios for a more extensive evaluation.

The EL procedure is nonparametric. The asymptotic scaling factor κ is “lightly” parametric in

the sense that it depends on the tail decay of the factors. For both the normal and Laplace cases, we
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have seen that κ = 1, so no scaling is necessary asymptotically, and we consider this representative

of what one should expect in any light-tailed (meaning exponential or lighter) setting. Regularly

varying tails are more typical for financial data. For data with an exponent of regular variation of

ν, we expect that using a scale correction of κ = (ν−1)/ν should be reasonably robust even beyond

the specific case of a t distribution. It should be noted that the procedure provided by Theorem 1

does not involve estimation of Σ, which can be particularly difficult in high dimensions. Indeed, we

suggest that the method provided by Theorem 1 is potentially applicable in practice even beyond

the set of models for which the result provides rigorous support.

Baysal and Staum [4] compare several methods for estimating confidence intervals for value-

at-risk and expected shortfall, including empirical likelihood, which they find to have the highest

coverage among the methods they compare. Their setting considers confidence regions for the

outputs of risk measurement — value-at-risk and expected shortfall — whereas our concern is with

the inputs in the form of most likely scenarios.

4.3 Coverage

Theorem 1 provides asymptotic support for confidence regions as the sample size and loss level

increase. To test the performance of the confidence regions at finite sample sizes and loss levels, we

use simulation. We generate points from a multivariate t distribution with uncorrelated marginals.

The loss is given by the linear function c>Z with c = (1, 0, . . . , 0)>, so the most likely scenario

producing a loss of ` is z∗(`) = (`, 0, . . . , 0)>. To test performance at sample size n, we generate

enough points to get n observations for which the loss is at least `; we then construct the confidence

region, scaled by κ`, and check if it contains z∗(`). We repeat this 1000 times and record the

percentage of times the confidence region contains z∗(`) as the estimated coverage.

Table 1 shows the results at degrees of freedom ν = 5, 6, and 7; dimensions d = 2, 5, and 10;

sample sizes n = 10, 50, and 500; and loss levels at the 95th, 99th, and 99.9th percentile of the tν

distribution. The top half of the table uses a confidence level of 95%, and the bottom half uses

50%. We need at least d+ 1 points in dimension d to get a confidence region with nonzero volume,

so the entries with n = d = 10 are blank. As expected, the observed coverage approaches the

nominal coverage as the sample size increases. The most significant shortfalls in coverage occur in

high dimensions with few points. The coverage is not very sensitive to the loss level `.
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ν = 5 ν = 6 ν = 7
95% confidence n = 10 50 500 10 50 500 10 50 500

d = 2, ` = F−1

ν
(.95) 73.4 90.0 94.8 75.7 93.1 93.6 74.8 91.4 95.0

F−1

ν
(.99) 71.6 90.2 95.7 74.6 92.3 95.7 75.6 91.8 94.0

F−1

ν
(.999) 72.4 91.2 95.2 72.3 92.4 96.3 77.6 93.4 94.2

d = 5, ` = F−1

ν
(.95) 30.1 84.4 94.6 29.2 86.8 94.3 30.4 86.6 95.2

F−1

ν
(.99) 26.3 85.9 94.2 28.6 89.1 93.7 28.5 87.2 93.9

F−1

ν
(.999) 25.2 86.6 93.8 28.5 89.1 95.1 31.0 86.3 94.4

d = 10, ` = F−1

ν
(.95) 69.6 93.8 71.8 94.2 73.6 93.6

F−1

ν
(.99) 68.0 92.3 69.5 92.9 71.0 94.4

F−1

ν
(.999) 68.2 94.1 73.5 93.8 74.3 94.0

50% confidence n = 10 50 500 10 50 500 10 50 500

d = 2, ` = F−1

ν
(.95) 35.4 45.0 48.0 35.8 47.8 48.8 36.8 47.0 46.4

F−1

ν
(.99) 30.8 43.2 48.4 32.5 44.4 50.2 35.4 47.0 49.1

F−1

ν
(.999) 33.6 45.4 51.5 35.9 46.2 50.4 35.4 50.6 52.0

d = 5 ` = F−1

ν
(.95) 10.7 39.2 50.6 12.6 40.6 48.4 11.3 39.7 50.1

F−1

ν
(.99) 9.4 37.8 46.5 10.7 40.8 46.6 11.5 41.8 51.2

F−1

ν
(.999) 8.8 37.3 45.2 11.9 39.8 51.1 12.0 39.0 46.0

d = 10, ` = F−1

ν
(.95) 22.7 46.5 26.3 51.4 26.6 47.6

F−1

ν
(.99) 23.1 44.9 24.3 48.0 25.7 49.6

F−1

ν
(.999) 23.6 46.6 28.0 47.0 26.7 49.7

Table 1: Estimated coverage of the most likely loss scenario for dimension d, sample size n ≥ d + 1, loss
level `, and degrees of freedom ν at confidence levels of 95% and 50%.

5 Application to Equity and Currency Scenarios

5.1 An Equity Portfolio

For our first application, we consider a portfolio of world equity indices: the S&P 500, FTSE, DAX,

Nikkei 225, Hang Seng, and Bovespa. We consider weekly returns from May 3, 1993, to December

26, 2011, and monthly returns from June 1, 1993, to December 1, 2011. We select weights based

on the market capitalization traded on each exchange, as listed in Table 2. This gives us a linear

loss function proportional to c = [−0.5050;−0.1362;−0.0539;−0.1443;−0.1022;−0.0583]; we scale

this c to get to a 1% loss level with weekly data and a 5% loss level with monthly data.

We model the returns on the equity indices using a multivariate t distribution. The density

with parameters µ, Σ, ν is given by

f(x|µ, Σ, ν) =
Γ( 1

2 (ν + d))

Γ( 1
2ν)(πν)d/2|Σ|1/2

(

1 +
(x− µ)>Σ−1(x− µ)

ν

)−(ν+d)/2

, for x ∈ R
d.

The mean and variance of the distribution are given by

E[X ] = µ, V(X) =
ν

ν − 2
Σ,
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Exchange Market Cap Proportion(%)

NYSE Euronext 13,394,081.8 50.50

London SE Group 3,613,064.0 13.62
Deutsche Börse 1,429,719.1 5.39

Tokyo SE Group 3,827,774.2 14.43
Hong Kong Exchanges 2,711,316.2 10.22

BM&FBOVESPA 1,545,565.7 5.83

Table 2: Market caps of exchanges at 2010, in USD millions, from www.world-

exchanges.org/statistics

assuming ν > 2. To estimate ν, we first estimate the sample mean and covariance and then

maximize the likelihood over ν. We get ν̂ = 5.0 with weekly data and ν̂ = 5.8 with monthly data.

For purposes of illustration, we show confidence regions for pairs of indices at a time, though

having an automated method is particularly valuable in multiple dimensions where visualization

is difficult. Figures 1 and 2 show results for weekly data. The circles show the observations, and

the crosses show the extreme observations — those beyond the loss threshold. The contours show

99% and 50% confidence regions for the conditional mean and (after scaling) for the most likely

loss scenario. The squares indicate the point estimates for the conditional and the most likely

loss scenario. The confidence regions are clearly shaped by the data — compare the two panels in

Figure 1, for example — yet tempered compared to the most extreme points. Figures 3 and 4 show

corresponding results for monthly data.

5.2 A Currency Portfolio

Next we consider a basket of currencies, half held in British pounds (GBP), the rest divided evenly

among the Australian dollar (AUD), the euro (EUR), the Japanese yen (JPY), and the Swiss franc

(CHF). We use monthly returns against the US dollar from February 2000 through December 2011.

A maximum likelihood fit of the data to a multivariate t distribution yields an estimate of ν̂ = 5.2

to the degrees-of-freedom parameter. For the loss severity `, we choose the loss threshold ` at the

level of the worst 5% of losses in the sample period. Our estimated most likely loss scenario is

(AUD, EUR, JPY, CHF, GBP) = (−5.5907%,−4.1142%, 1.0402%,−4.0246%,−4.4338%),

the values on the right indicating one-month returns against the US dollar.

Figure 5 illustrates the results. The circles show the observations, and the crosses show the 5%

most extreme observations — those beyond the loss threshold. The contours show 99% and 50%

confidence regions for the conditional mean and (after scaling) for the most likely loss scenario.

The squares indicate the point estimates.
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Figure 1: Equity indices, weekly data
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Figure 2: Equity indices, weekly data
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Figure 3: Equity indices, monthly data
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Figure 5: Foreign currencies, monthly data

In the left panel, we see that the confidence regions for the most likely loss reflect the skewness

in the joint distribution of the EUR/USD and CHF/USD returns. The most likely loss scenario

involves an increase in the JPY/USD rate, even though this increase would, by itself, generate a

gain, not a loss, for the portfolio. This outcome is a reflection of the joint distribution of the returns:

the largest drops in the GBP (which makes up 50% of the portfolio) coincide with increases in the

JPY/USD rate. However, the confidence regions in the right panel of Figure 5 also indicate a wide

range of outcomes for the JPY/USD rate when the GBP drops, suggesting that one should explore

other scenarios in the large-loss region, a topic to which we return in Section 8.

6 Conditional Moments and Marginal Shortfall

Marginal expected shortfall (MES) provides a mechanism for attributing a portfolio’s overall loss

in a stress test to parts of the portfolio or to individual factors. The MES of a subportfolio

is its expected loss conditional on the loss in the full portfolio exceeding some threshold. The

analysis underlying Proposition 1 and Theorem 1 allows us to characterize MES and a corresponding

conditional variance for the distributions we consider. Moreover, the EL procedure provides a way

to measure the precision of MES estimates.

6.1 Conditional Moments in Extremes

The key to this analysis (and to the proof of Theorem 1) is the calculation of conditional moments

in extremes for the multivariate distributions we consider. In fact, it suffices (see the appendix) to
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consider a pair (Z1, Z2) having the distribution of
√

W (N1, N2), where (N1, N2) are independent

standard normal random variables. Table 3 summarizes the conditional means and variances of the

factors, given an extreme outcome of one of the factors.

Moving from left to right in the table, we have heavier tails. As one would expect, the conditional

variance of Z1 itself, conditional on Z1 ≥ `, increases with the heaviness of the tail, increasing from

O(1/`2) to O(1) to O(`2). The conditional variance of Z2 given Z1 ≥ ` also increases from left to

right but by a factor of O(`) each time, starting from a value of 1. The net effect is that under the

multivariate t distribution, the conditional variances of Z1 and Z2, given Z1 ≥ `, have the same

order of magnitude, and this underpins the fact that κ 6= 1 in this case.

Normal Laplace tν , ν > 2

E[Z1|Z1 ≥ `] ` + o(`) ` + 1√
2λ

ν
ν−1 ` + o(`)

E[Z2
1 |Z1 ≥ `] `2 + o(`2) (` + 1√

2λ
)2 + 1

2λ
ν

ν−2 `2 + o(`2)

V(Z1|Z1 ≥ `) 1
`2

+ o( 1
`2

) 1
2λ

ν
(ν−2)(ν−1)2

`2 + o(`2)

E[Z2|Z1 ≥ `] 0 0 0

V(Z2|Z1 ≥ `) = E[Z2
2 |Z1 ≥ `] 1 1√

2λ
` + 1

λ
ν

(ν−2)(ν−1)`
2 + o(`2)

Table 3: Conditional means and variances of factors, given an extreme outcome of Z1.

6.2 Marginal Shortfall

Using the asymptotic moments in Table 3, we can analyze the marginal expected shortfall (MES)

of part of a portfolio conditional on a large loss in the portfolio, provided the joint distribution of

returns falls within one of the cases in the table. Suppose, now, that Y = (Y1, . . . , Yd)
> in (5) is

a vector of asset returns, with mean µ and covariance matrix wΣ; we have w = 1 in the normal

case, w = 1/λ for the Laplace distribution, and ν/(ν − 2) for the multivariate tν . The loss for a

portfolio holding these assets is given by c>Y, for some c ∈ Rd. For each asset i and loss level `,

define the marginal expected shortfall and the corresponding variance by

MES i = E[Yi|c>Y ≥ `]

MVS i = V[Yi|c>Y ≥ `].

We analyze these quantities for large loss levels `. The marginal shortfall contribution for the ith

subportfolio or factor is ci times the expression given here for MES i.

To lighten notation, let (β1, . . . , βd) = c>Σ/(c>Σc) and write, for each i = 1, . . . , d,

Yi = µi + βic
>(Y − µ) + εi; (7)
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this representation defines εi and makes it uncorrelated with c>Y. Letting σ2
εi

denote the variance

of εi, we get σ2
εi
/w = σ2

i − β2
i c

>Σc, with σ2
i = Σii. Denote by µc = c>µ the expected loss and by

σ2
c = wc>Σc its variance.

Proposition 2 As ` → ∞, MES i and MVS i behave as follows.

(i) If Y − µ is multivariate normal, then

MES i = µi + βi(` − µc) + o(`)

MVS i = σ2
εi

+ β2
i σ4

c /(`− µc)
2 + o(1/`2).

(ii) If Y − µ is multivariate Laplace, then

MES i = µi + βi(` − µc) +
βiσc√

2

MVS i = σ2
εi

+
β2

i σ2
c

2
+

σ2
εi

σc

√
2
(` − µc).

(iii) If Y − µ is multivariate tν , ν > 2, then

MES i = µi +
ν

ν − 1
βi(` − µc) + o(`)

MVS i =

(

β2
i ν

(ν − 2)(ν − 1)2
+

νσ2
εi

(ν − 2)(ν − 1)σ2
c

)

(`− µc)
2 + o(`2).

Proof. The results follow from substituting (7) into the definitions of MES and MVS and then using

Table 3 to evaluate the conditional mean and the conditional variance, taking Z1 =
√

w(c>Y −
µc)/σc and Z2 =

√
wεi/σεi . The formulas in the table apply because this (Z1, Z2) is a linear

transformation Y − µ and thus has a bivariate normal, Laplace or t distribution accordingly. �

Proposition 2 shows, as one might expect, that the MES is larger under the Laplace and t distri-

butions than under the normal distribution; but the result shows an interesting distinction between

the two cases: the increase is additive under the Laplace distribution and multiplicative under the

t distribution. The result also highlights important differences in how the MVS depends on the

loss level `: the increase is linear with the Laplace distribution and quadratic with t distribution.

A large MVS suggests that estimates of MES are likely to be imprecise, an issue we examine next.

Notice the following difference between Theorem 1 and Proposition 2. Even though, according to

Proposition 2, a heavier-tailed distribution has a larger marginal variance, Theorem 1 tells us the

confidence regions are not much different from each other once the data is fixed.
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6.3 EL Significance of MES Rankings

The EL method in Section 3 can be used to estimate confidence regions for a full vector (MES 1,

. . . , MES d). Here we extend these ideas to measure the significance of MES rankings.

Acharya et al. [1] use an MES measure as part of their analysis of systemic risk. Their MES for

a company is the expected decline in the company’s stock price conditional on a large decline in the

whole market, as measured by a broad market index. This quantity measures the expected amount

of capital the company would lose in a crisis and is thus a measure of the company’s contribution to

a crisis. This is a type of stress test in which the implicit stress scenario is a decline in the market

index. Acharya et al. [1] rank firms by their MES as an indication of their systemic importance.

A ranking MES i > MES j of firm i higher than firm j is equivalent to the point (MES i, MES j)

lying below the 45o line in the plane. In practice, we estimate MES values from historical data and

check if the point estimate falls in this halfspace. We can supplement the point estimate with an

EL confidence region using the procedure in Section 3. If a 95% confidence region is fully contained

within the halfspace but a 99% confidence region is not, then the significance of the ranking is

between 1% and 5%. Indeed, we can measure the significance of an estimated ranking by the

smallest p for which the (1− p) confidence region is contained within the halfspace. The same idea

can be applied to test the simultaneous significance of an ordering of three or more firms.

Following Appendix B of Acharaya et al. [1], we estimate MES values using daily stock returns

for the 13 months from June 2006 through June 2007. We find the 5% of days with the largest

declines in the CRSP value-weighted index and estimate the MES of each firm in Appendix B

by averaging the firm’s stock return over those days.2 The resulting top 50 values and rankings,

displayed in Table 4, match those in Acharya et al. [1]. See Brownlees and Engle [8] for a dynamic

approach to MES estimation.

In Table 4, we also report EL confidence levels (i.e., 1 minus significance levels) for pairwise

comparisons between firms ranked consecutively, firms ranked ten apart, and between each firm

and AIG, which is ranked 100th. None of the comparisons between consecutive firms or firms

ranked ten apart approaches conventional thresholds for statistical significance, corresponding to

a confidence level of 90% or higher. There is too much conditional variability in the tails to draw

reliable conclusions about the MES comparisons, as one might suspect from the MVS asymptotics

in Proposition 2. Nearly all the comparisons with AIG are highly significant. The overall picture

that emerges from the table is that the top 50 firms can be confidently ranked higher than the

100th, but all of the top 50 should be viewed as of roughly equal importance, as measured by MES.

2The worst days are, in decreasing order of severity, Feb 27, Mar 13, Jun 5, 2006, Jun 7, 2007, Jun 12, 2006, Nov
27, Jul 13, May 10, Jun 13, 2006, Jun 20, 2007, Mar 2, Mar 5, Sep 6, and May 24.

17



−0.02 0 0.02 0.04 0.06 0.08

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

− Log Return on ICE

−
 L

o
g

 R
e

tu
rn

 o
n

 E
T

F
C

 

 

Data points

MES estimates

0.47% confidence region

Diagonal axis

−0.02 0 0.02 0.04 0.06 0.08

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

− Log Return on ICE

−
 L

o
g

 R
e

tu
rn

 o
n

 S
C

H
W

 

 

Data points

MES estimates

37.29% confidence region

Diagonal axis

−0.02 0 0.02 0.04 0.06 0.08

−0.02

0

0.02

0.04

0.06

0.08

− Log Return on ICE

−
 L

o
g

 R
e

tu
rn

 o
n

 A
IG

 

 

Data points

MES estimates

98.88% confidence region

Diagonal axis

Figure 6: The figures show the largest EL confidence regions for (MES i, MES j) below the 45o

degree line for the cases (i, j) = (1, 2), (1, 11), and (1, 100).

The fact that AIG is ranked 100th during this period, despite its subsequent role in the financial

crisis, reflects the limitations of trying to measure systemic risk purely through stock market data.

The pairwise comparison for ICE with ETFC, SCHW, and AIG are illustrated in Figure 6.

Each panel plots the negative log returns for the indicated stocks on the worst 5% of days for the

index. Each panel also shows the largest EL confidence region contained below the 45o line. The

corresponding confidence level (or, more precisely, the amount by which the confidence level falls

short of 100%) measures the significance of each pairwise ordering. These are the values reported

in Table 4. The rightmost panel of Figure 6 indicates substantial skewness in the extreme outcomes

and how this skewness is reflected in the confidence region.

7 Application to Macro Stress Scenario Generation

The goal of macro stress testing of banks or the full banking system is to gauge the ability of

banks to sustain losses under adverse economic and financial conditions. The stress scenarios are

usually defined in terms of broad economic and financial variables, rather than directly through the

values of assets held by banks. Defining consistent stresses across multiple variables is important

for stress tests used to set capital levels; Schuermann [26] refers to this as the problem of defining

coherent scenarios. An inconsistent set of stresses implicitly lowers the capital charge for some

activities relative to others, much as misspecification of risk weights does under traditional capital

calculations. This creates the potential for regulatory arbitrage if banks can anticipate which

variables are over-stressed or under-stressed. See Breuer et al. [7] and Kupiec [18] for related

considerations.

In this section, we apply the reverse stress testing methodology to examine the consistency of

stresses across variables. We condition on a large move in one variable to see the effect on other
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MES
Name of Company Ticker MES

Confidence (MES i > MES j)
ranking, i j = i + 1 j = i + 10 j = 100

1 INTERCONTINENTALEXCHANGE INC ICE 3.36% 0.47% 37.29% 98.88%
2 E TRADE FINANCIAL CORP ETFC 3.29% 4.57% ** 100.00%
3 BEAR STEARNS COMPANIES INC BSC 3.15% 1.33% 48.85% 100.00%
4 N Y S E EURONEXT NYX 3.05% 4.82% 39.18% 99.99%
5 C B RICHARD ELLIS GROUP INC CBG 2.84% 0.16% 82.10% 100.00%
6 LEHMAN BROTHERS HOLDINGS INC LEH 2.83% 5.10% 90.70% 100.00%
7 MORGAN STANLEY DEAN WITTER & CO MS 2.72% 1.57% 44.53% 100.00%
8 AMERIPRISE FINANCIAL INC AMP 2.68% 0.27% 53.85% 100.00%
9 GOLDMAN SACHS GROUP INC GS 2.64% 0.05% 67.56% 100.00%
10 MERRILL LYNCH & CO INC MER 2.64% 2.82% 40.74% 100.00%
11 SCHWAB CHARLES CORP NEW SCHW 2.57% ** 22.66% 99.97%
12 NYMEX HOLDINGS INC NMX 2.47% ** ** **
13 C I T GROUP INC NEW CIT 2.45% 0.06% ** 100.00%
14 T D AMERITRADE HOLDING CORP AMTD 2.43% 7.68% 11.21% 99.99%
15 T ROWE PRICE GROUP INC TROW 2.27% 0.76% 12.06% 100.00%
16 EDWARDS A G INC AGE 2.26% 0.08% 19.52% 100.00%
17 FEDERAL NATIONAL MORTGAGE ASSN FNM 2.25% 0.43% 22.70% 100.00%
18 JANUS CAP GROUP INC JNS 2.23% 0.56% 20.89% 99.89%
19 FRANKLIN RESOURCES INC BEN 2.20% 0.96% 19.79% 99.94%
20 LEGG MASON INC LM 2.19% 0.34% 25.82% 99.88%
21 AMERICAN CAPITAL STRATEGIES LTD ACAS 2.15% 0.28% 38.14% 100.00%
22 STATE STREET CORP STT 2.12% ** 39.60% 100.00%
23 WESTERN UNION CO WU 2.10% ** ** **
24 COUNTRYWIDE FINANCIAL CORP CFC 2.09% 0.11% 29.19% 96.14%
25 EATON VANCE CORP EV 2.09% 2.08% 51.50% 99.72%
26 S E I INVESTMENTS COMPANY SEIC 2.00% 0.72% 12.18% 99.86%
27 BERKLEY W R CORP BER 1.95% 0.08% 16.95% 99.85%
28 SOVEREIGN BANCORP INC SOV 1.95% 0.61% 37.21% 100.00%
29 JPMORGAN CHASE & CO JPM 1.93% 2.20% 45.10% 100.00%
30 BANK NEW YORK INC BK 1.90% 1.79% 63.02% 100.00%
31 M B I A INC MBI 1.84% 0.09% 17.72% 99.54%
32 BLACKROCK INC BLK 1.83% 0.53% 13.39% 99.58%
33 LEUCADIA NATIONAL CORP LUK 1.80% 0.00% 13.79% 99.89%
34 WASHINGTON MUTUAL INC WM 1.80% 2.20% 44.33% 99.95%
35 NORTHERN TRUST CORP NTRS 1.75% 0.39% 12.06% 100.00%
36 C B O T HOLDINGS INC BOT 1.71% 0.01% 5.91% 82.07%
37 PRINCIPAL FINANCIAL GROUP INC PFG 1.71% 4.21% 38.22% 99.97%
38 CITIGROUP INC C 1.66% 0.69% 18.75% 99.92%
39 LOEWS CORP LTR 1.63% 0.99% 11.10% 98.09%
40 GENWORTH FINANCIAL INC GNW 1.59% 0.23% 11.51% 99.77%
41 LINCOLN NATIONAL CORP IN LNC 1.59% 0.05% 100.00%
42 UNION PACIFIC CORP UNP 1.58% 0.86% 92.23%
43 AMERICAN EXPRESS CO AXP 1.56% 0.57% 99.94%
44 COMERICA INC CMA 1.55% 0.75% 99.92%
45 C I G N A CORP CI 1.54% 0.09% 76.81%
46 FIDELITY NATIONAL INFO SVCS INC FIS 1.54% 0.36% 99.65%
47 METLIFE INC MET 1.52% 0.61% 96.81%
48 PROGRESSIVE CORP OH PGR 1.51% 1.05% 99.50%
49 M & T BANK CORP MTB 1.49% 0.21% 98.13%
50 NATIONAL CITY CORP NCC 1.48% 91.21%

100 AMERICAN INTERNATIONAL GROUP INC AIG 0.71%

Table 4: Estimates of MES and top 50 rankings based on daily returns from June 2006 through June
2007, as in Acharya et al.[1]. The last three columns show EL confidence levels for the significance

of pairwise comparisons of rankings. NMX and WU traded for only part of the time period and
are omitted from the comparison. 19



variables. Conditioning on a decline in GDP, for example, is analogous to taking GDP as the loss

function.

The scenarios we consider are based on several of the variables selected by the Federal Reserve

for the 2012 Comprehensive Capital Analysis and Review (CCAR). The full details of the CCAR

scenarios are included in [5]. Here, we confine ourselves to the following variables: US real GDP

growth rate, US unemployment growth rate, a seasonally adjusted house price index (HPI), returns

of the Dow Jones Total Market Index, changes in the level of the VIX, and changes in the level of

the EUR/USD exchange rate.3

Rather than treat the data series as i.i.d., we fit a vector autoregressive model to the data and

treat the residuals as i.i.d. and apply EL to the residuals. We estimate the model from quarterly

values from Q1-1990 through Q3-2011, a longer series than that tabulated in [5]. After comparing

alternative specifications, we fit a first-order model in which the off-diagonal entries involving HPI

are zero and all other entries are unconstrained. From the residuals, we get a maximum likelihood

estimate of ν = 8.43. We stress each variable — more precisely, its residual — and then estimate

confidence regions for the most likely values of the residuals of the other variables, which we then

convert to the variables themselves. (The confidence regions do not reflect uncertainty in the

estimated VAR parameters that produce the residuals.) Doing so provides a reference point for

evaluating the moves in the other variables in a specific scenario, given the move in one variable.

Table 5 provides a first look at the scenarios from this perspective. For each variable, the table

first reports the first-quarter CCAR scenario in the units of each variable. We then convert each

variable into a residual and a standardized residual. Several of these stresses go well beyond the

available data, so in the last two columns we introduce reduced stresses, chosen so that we have

at least five scenarios more extreme than the indicated stress within the window of historical data.

We use these reduced stress levels when we estimate the impact on other variables.

In Figures 7–10, we show EL confidence regions for the most likely values of pairs of variables

when one variable (which may be one of the pair or a third variable) exceeds its stress level. The

circles and crosses show past observations, the crosses indicating those that are beyond the indicated

stress. In each case, we show confidence regions for the conditional mean and shifted confidence

regions for the most likely outcome. For illustrative purposes, we also include the CCAR scenario

in each figure, marked by an asterisk. The CCAR includes values for 13 consecutive quarters, of

which we consider only the first. The procedure could be extended to subsequent quarters by taking

3We convert the CCAR scenarios for unemployment, the VIX, and EUR/USD exchange rate from levels to
differences, and we convert the stock index and HPI scenarios from levels to returns. For the HPI, we use seasonally
adjusted values from CoreLogic; these are very close to those reported in [5] and allow us to use a longer time series.
For the VIX, we use the maximum value in each quarter, as appears to have been used in [5], correcting the value
for Q2-2008 from 31.01, as reported in [5], to 24.12.
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CCAR Residuals Standardized Stress Standardized
Scenarios of Scenarios Residuals Level Stress Level

Real GDP Growth Rate -4.84 -4.5926 -2.0867 -3.5703 -1.6222
Change in Unemployment Rate 0.59 0.3756 2.0505 0.2363 1.2901

Return on DJ Total Market Index -0.1929 -0.1714 -1.9978 -0.1714 -1.9978
Change in VIX Index 27.86 28.1367 3.2212 16.4281 1.8807

Change in EUR/USD Exchange Rate -0.03 -0.0395 -0.5772 -0.0395 -0.5772
Return on HPI -0.0126 -0.0105 -1.2094 -0.0105 -1.2094

Table 5: From left to right, the table shows the first quarter CCAR scenario for each variable in
the units of that variable; the corresponding residual and standardized residual; a reduced stress

in the units of each variable; and the standardized residual for the reduced stress.

a path of residuals as a single outcome.

In Figure 7, we stress GDP and unemployment and look at the most likely outcome for the

combination of the two. The CCAR scenario falls just at the edge or just beyond the 99% confidence

region, consistent with the fact that we are applying the reduced stresses from Table 5.
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Figure 7: Confidence regions conditional on the indicated stressed variable

In Figure 8, we stress the VIX. The left panel shows the impact on financial variables, and the

right panel shows the impact on macro variables. Interestingly, the CCAR scenario falls on the

boundary of the 99% confidence region in each case.

Figure 9 presents a rather different picture. Here we stress the EUR/USD exchange rate and

again compare the impact on financial variables (left) and macro variables (right). In both cases

we find that the most likely outcomes for the other variables are near the center of the historical

distribution, and the CCAR scenario is very extreme by comparison. This is not surprising — it
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Figure 8: Confidence regions conditional on the indicated stressed variable

reflects the fact that a stressed value of the exchange rate is not, by itself, associated with extreme

values of the other variables.
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Figure 9: Confidence regions conditional on the indicated stressed variable

In our final example, Figure 10, we again stress GDP and unemployment, but we now look at the

impact on financial variables. Here the CCAR scenario looks comparatively extreme, particularly

in the right panel. This is partly due to the fact that we are applying reduced stresses from

Table 5. However, it also suggests that the change in financial variables associated with stresses

to the macro variables posited by the CCAR are relatively extreme when compared with historical
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co-movements. All of these examples also point to the value of exploring important regions through

multiple scenarios, a problem we take up in the next section.
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Figure 10: Confidence regions conditional on the indicated stressed variable

8 Generating Extreme Scenarios

The examples of Sections 5 and 7 point to the need to consider multiple combinations of extreme

movements, given uncertainty around the most likely conditional scenario. In this section, we

propose a method for drawing extreme scenarios by simulation, building on historical scenarios but

not restricting ourselves to past observations. The method is based on the idea of using the EL

confidence regions (or a simplified construction) as contours of relative probability for a hypothetical

distribution. The merits of this approach are that it uses available extreme observations to guide

sampling while, unlike bootstrapping, generating scenarios outside the historical record. We see this

sampling algorithm as a sensible way to explore the region of large-loss scenarios and to generate

candidates in the vicinity of the most likely loss scenario, rather than as a way to undertake precise

calculations for the conditional distribution of the factors. As we noted in Section 1, rather little

is known about multivariate distributions conditioned on extremes.

A direct approach to using the EL contours to guide scenario generation would be to normalize

R to a probability density and then sample from this density. Because R is bounded between

0 and 1, this can be implemented without explicit normalization through rejection sampling, as

follows. Sample U uniformly from a rectangle in Rd that contains the convex hull of the data points

Z1, . . . , Zn; accept U with probability R(U). The accepted values then have a probability density
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proportional to R. A shortcoming of this approach is that the acceptance probability can be quite

small, particularly in high dimensions, making the procedure quite slow.

A faster alternative is to generate random weight vectors in the unit simplex and then map these

to scenarios using the data points. We implement this using a Dirichlet distribution for the weights.

A random vector (W1, . . . , Wn) has a Dirichlet distribution with parameter α = (α1, . . . , αn), all

αi > 0, if (W1, . . . , Wn−1) has probability density

f(w1, . . . , wn−1; α1, . . . , αn) =
1

B(α)

n
∏

i−1

wαi−1
i ,

for w1, . . . , wn ∈ (0, 1) with wn = 1 − w2 − · · · − wn−1. Here, B(α) is the normalization constant

B(α) =

∏n
i=1 Γ(αi)

Γ(
∑n

i=1 αi)
.

Dirichlet distributions provide a natural and flexible family of distributions for random weight

vectors. Given a sample (w1, . . . , wn−1) from a Dirichlet distribution and loss scenarios Z1, . . . , Zn

in Rd, we generate a new scenario by setting

Z = w1Z1 + · · ·+ wn−1Zn−1 + (1 − w1 − · · · − wn−1)Zn. (8)

Sampling from Dirichlet distributions is easy using the algorithm in Devroye [10]. Generate

Y1, . . . , Yn independently, each Yi having a gamma distribution with shape parameter αi and scale

parameter 1. Then set Wi = Yi/(Y1 + · · ·+ Yn), i = 1, . . . , n.

With α = (1, . . . , 1), the Dirichlet distribution is the uniform distribution on the unit simplex.

With α = (2, . . . , 2), the Dirichlet density is proportional to the product used to define the empirical

likelihood in (3). However, sampling from this weight distribution and then mapping weights to

scenarios through (8) is not equivalent to sampling scenarios from the density proportional to R
because R(Z) is defined by the maximum product over all weight vectors satisfying (8). When

all αi are equal, smaller values of the parameters generate more scenarios near the extreme points

Z1, . . . , Zn, and larger values generate more scenarios near the mean. In simulation experiments,

we have found that the uniform case α = (1, . . . , 1) often produces a scenario distribution closer to

that obtained by rejection sampling from R unless n is very small.

As n grows, the EL confidence regions tighten around the true (conditional) mean, and samples

generated in proportion to R or using random weights as described above concentrate around a

single point. To keep the dispersion of the scenarios generated consistent with the dispersion of the

observed scenarios, we need to scale the scenarios by a factor that grows with n.

The central limit theorem suggests that we should scale the distance from the conditional mean

by the square root of the number of historical scenarios. In more detail, let z̄ be the sample mean

24



(Z1 + · · ·+ Zn)/n, let Z be as in (8), and set

Z̃ = z̄ +
√

n(Z − z̄). (9)

This transformation dilates the contours of the distribution defined through (8), offsetting the

concentration of the confidence regions. To see the analogy with the central limit theorem, suppose

X1, . . . , Xn are i.i.d. N (µ, Σ) random vectors with sample mean X̄ and sample covariance matrix

S. The distribution of X̄ is N (µ, Σ/n), which is approximated by N (X̄, S/n); scaling the distance

from the mean by
√

n transforms this distribution to N (X̄, S), which approximates the underlying

distribution N (µ, Σ).

To illustrate, we consider the joint distribution of weekly returns of the Dow Jones Total Market

Index and weekly changes in level of the VIX from the beginning of 1990 (the earliest date for which

the VIX is available) through the end of February 2012, for a total of 1,156 observations. We select

the worst 11 weeks (1%) as measured by the index returns; these are the weeks in which the index

declines by more than 6.27%. We record both the change in the VIX and index returns in these

weeks. These outcomes are indicated by the large circles in Figures 11-12. We interpret these as

samples from the joint distribution of the index return and the change in the VIX conditional on

a decline in the index greater than 6.27%.

In Figure 11, we generate 500 points using (8) and random weights from symmetric Dirichlet

distributions with αi = 1 (left) and αi = 2 (right). The point marked by an asterisk is the

conditional mean of the historical observations. The simulated points reflect uncertainty in this

conditional mean, and all lie within the convex hull of the historical data. The figure on the right

shows greater concentration near the mean, consistent with the larger value of α. In both cases, if

we added observations to the 11 historical points, we would see greater clustering around the mean.

In Figure 12, we use random weights with αi = 1, as in the left panel of Figure 11, but then

scale as in (9). The objective here is to generate extreme scenarios for the joint movement of the

Dow Jones index and the VIX — not to draw from the distribution of the sample mean. We want

the extreme scenarios we generate to extrapolate beyond the 11 historical scenarios in a sensible

way. The figure shows 50,000 simulated points to illustrate the distribution; in practice, one would

typically generate far fewer scenarios.

For comparison, the figure includes an ellipse defined by the mapping

z 7→ (z− z̄)>S−1(z− z̄),

with S the sample covariance matrix of the 11 historical observations. This is a contour of the

normal distribution with matching mean and covariance — for illustration, we have chosen the

contour that passes through the most extreme of the 11 historical scenarios. The key point is that
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Figure 11: The large circles are historical observations for the VIX and Dow Jones Total Market
Index — the worst 1% of weekly observations, as determined by the return on the Dow Jones index
from January 1990 through February 2012. The asterisk indicates their conditional mean. The

small points are simulated using Dirichlet weights with αi = 1 (left) and αi = 2 (right).

the simulated distribution driven by the random weights captures the skewness and general shape

suggested by the historical scenarios. The ellipse indicates that sampling from a matching normal

distribution instead would produce far more observations in the lower right corner and far fewer in

the upper left. Skewness is to be expected in this examples (and others like it) because we have

conditioned on falling below a linear combination of the variables — in this case, falling below an

extreme value of the first coordinate.

9 Concluding Remarks

Stress testing is of growing importance in both industry and regulatory practice, yet there is rather

little theory underpinning the selection of stress scenarios. In this paper, we have introduced an

approach for selecting scenarios that combines historical data with qualitative information about

the tail behavior of risk factors. Rather than simply posit a hypothetical extreme outcome, our

method estimates the most likely scenarios leading to a loss of a given magnitude, which ensures

the relevance of the scenarios selected for the portfolios to be stress tested.

Historical data on extreme events is, by definition, limited. Our method acknowledges uncer-

tainty in extremes by generating confidence regions rather than just individual scenarios. These

confidence regions combine a nonparametric empirical likelihood estimator, which captures skew-

ness and other features of extreme observations, with an adjustment based on the heaviness of the

tails of market risk factors.

As a further application of these ideas, we analyze marginal expected shortfall. MES measures
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Figure 12: The small points indicate simulated scenarios using Dirichlet weights with αi = 1 and
scaling as in (9). The ellipse is a contour of the normal distribution with the same mean and
covariance as the 11 historical observations, which cannot capture the skewness in the data.

the expected loss in part of a portfolio conditional on a stress to the full portfolio. It has also been

proposed as a measure of systemic risk when applied across firms rather than across parts of a

single portfolio. Our analysis shows how the variability in MES estimates depends on the heaviness

of the tails of market risk factors. We also show how empirical likelihood confidence regions can be

used to assess the statistical significance of MES rankings, again taking into account the limited

data available in extreme stress scenarios.
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A Appendix: Proofs

A.1 Main Results

Most of the work in proving Proposition 1 and Theorem 1 lies in establishing the limits in Table 3.

Before detailing these limits, we show how they lead to the stated results. For Proposition 1 we

need finite means, hence the condition ν > 1; the variance limits in Table 3 and Proposition 2

require finite variance, thus ν > 2; and Theorem 1 requires finite fourth moments, hence ν > 4.

Recall our standing assumption that the covariance matrix Σ of Z is positive definite. By rela-

beling L as the (d+ 1)st coordinate of Z, we may rewrite (Z, L) simply as Z̃ ∈ Rd+1. Conditioning

on L ≥ ` then reduces to conditioning on c>Z̃ ≥ ` with c> = (0, . . . , 0, 1) ∈ R
d+1, provided the
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covariance matrix Σ̃ of (Z, L) remains positive definite. If Σ̃ fails to be positive definite, then there

exists a vector c ∈ Rd such that L = c>Z + h, a.s., where h is a constant. Thus, for both cases, it

suffices to consider conditioning on c>Z̃ ≥ ˜̀, for some ˜̀ and some c 6= 0, with Z̃ having a positive

definite covariance matrix. We may therefore drop the tildes.

Proof of Proposition 1: By replacing ` with `− c>µ, we may take µ = 0 in the representation (5).

More generically, if a vector Z has a distribution of the form (5) with µ = 0, we can represent it as

Z =
√

WAN, where the matrix A satisfies AA> = Σ, and N ∼ N (0, I). Suppose we condition on

c>Z =
√

Wc>AN. Since N has a spherical distribution, we can find an orthogonal matrix R such

that c>AR = ‖A>c‖(1, 0, . . . , 0) and R−1N is also N (0, I). That is,

(c>AR)(
√

WR−1N) =
√

W ‖A>c‖Z ′
1

where Z′ = R−1N ∼ N (0, I). Hence, we can reduce an arbitrary linear combination to one of the

form c = (1, 0, . . . , 0)> with Z =
√

WN, where N is N (0, I).

In the setting of the proposition, this shows that we can find a linear bijection B such that

Bz∗(`) = `× (1, 0, . . . , 0)> and Bz̄(`) = E[Z1|Z1 ≥ `]× (1, 0, . . . , 0)>. By setting κ` = `/E[Z1|Z1 ≥
`], we obtain the equation (6). The first row of Table 3 then gives the stated limits for κ`. �

Owen [21] provides a triangular array version of his EL theorem for data of the form Z1,n, . . . , Zn,n,

n = 1, 2, . . . , in which variables with a shared second subscript are independent of each other and

have a common mean. His result requires two conditions:

(i) For some c > 0,
λm,n

λM,n
≥ c, where λm,n and λM,n are the minimum and maximum eigenvalues

of the covariance matrix associated with the n-th row of the array, respectively.

(ii) 1
n2

∑n
i=1 E

[

‖Zi,n − µn‖4λ−2
M,n

]

→ 0.

An additional convex hull condition required for the theorem is automatically satisfied by the

normal, Laplace, and t distributions.

Define

Dn =







diag{`n, 1, . . . , 1} for normal case;

diag{1, 1√
`n

, . . . , 1√
`n
} for Lapalce case;

diag{ 1
`n

, . . . , 1
`n
} for tν case

where diag represents a diagonal matrix with specified elements. Let Z1, Z2, . . . are i.i.d. factor

changes. Choose those satisfying c>Zj ≥ `n, so that Z′
1,n, . . . , Z′

n,n are i.i.d. samples from the

distribution of Z|{c>Z ≥ `n}. Then, we can apply the EL theorem for triangular arrays to the

scaled factors Zk,n = DnBZ′
k,n where B is the transform introduced in the proof of Proposition 1.

Theorem 1 follows once we verify conditions (i) and (ii) for this array and apply Proposition 1. We
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will show that the off-diagonal conditional covariances all vanish in Section A.2, so (i) will follow

from limits of the conditional variances in Table 3. For (ii), we need to extend these limits to higher

moments and these computations are shown in Section A.3, A.4, and A.5.

We apply the Theorem 1 to DnBZ′
k,n for the inference of DnBE[Z|c>Z ≥ `n]. To infer

E[Z|c>Z ≥ `n], we can apply the procedure to the original data Z′
k,n since the confidence region

C1−α,n consists of convex (so linear) combination of observed data.

A.2 Vanishing Conditional Covariances

For all 1 ≤ i < j,

COV(Zi, Zj|Z1 ≥ `) = E[ZiZj|Z1 ≥ `]− E[Zi|Z1 ≥ `] × E[Zj|Z1 ≥ `]

= E[ZiZj|Z1 ≥ `]

= E

[

a2W E[NiNj|N1, W ]
∣

∣

∣
Z1 ≥ `

]

= E

[

a2W E[Ni|N1, W ]E[Nj|N1, W ]
∣

∣

∣
Z1 ≥ `

]

= 0 (10)

since E[Zj|Z1 ≥ `] = 0 and E[Nj|N1, W ] = 0. Hence it is enough to consider the conditional

variances to check the eigenvalue conditions (i) of conditional covariance matrices.

A.3 Normal Distribution

A.3.1 Asymptotic Conditional Moments for the Normal Distribution

Consider Z = a
√

WN = N where N is N (0, I). Define A(`) = {Z1 ≥ `} = {N1 ≥ `}. φ is the pdf

of the standard normal random variable. Observe that

E[Zk
1 |Z1 ≥ `] · P(A(`)) = E

[

Zk
1 1{Z1≥`}

]

=

∫ ∞

`
xkφ(x)dx

and

E[Zk
2 |Z1 ≥ `] = E[Zk

2 ] =







0 for k = 1
1 for k = 2
3 for k = 4

.

Hence we have

lim
`→∞

V(Z2|Z1 ≥ `) = 1 (11)

and

lim
`→∞

E

[

(Z2 − E[Z2|Z1 ≥ `])4
∣

∣

∣
Z1 ≥ `

]

= 3. (12)
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It is also easy to see

lim
`→∞

1

`
E[Z1|Z1 ≥ `] = lim

`→∞

∫∞
` xφ(x)dx

`P(A(`))
= 1. (13)

A.3.2 Asymptotic Conditional Centered Moments for the Normal Distribution

Define

Z1|{Z1 ≥ `} = Z` = ` +
1

`
X`.

Then X` has non-negative values and a pdf of

f`(x) =
1

C`
e−xe−

x2

2`2 ≤ 1

C`
e−x

where lim`→∞ C` = 1. (See Section 3.4 in Embrechts, Kluppelberg, and Mikosch [11], Set µ` =

E[X`] and observe that, by the dominated convergence theorem,

lim
`→∞

µ` = lim
`→∞

∫ ∞

0

xf`(x)dx =

∫ ∞

0

xe−xdx = 1.

Then `(Z` − E[Z`]) = X` − µ` and

lim
`→∞

E

[

(`Z1 − E[`Z1|Z1 ≥ `])k
∣

∣

∣
Z1 ≥ `

]

= lim
`→∞

E

[

(`Z` − `E[Z`])
k
]

= lim
`→∞

E

[

(X` − µ`)
k
]

= lim
`→∞

1

C`

∫ ∞

0

(x − µ`)
kf`(x)dx

=

∫ ∞

0

(x − 1)ke−xdx,

again by the dominated convergence theorem. It is also known that
∫ ∞

0
(x − 1)2e−xdx = 1 and

∫ ∞

0
(x − 1)4e−xdx = 9.

Hence we have

lim
`→∞

V(`Z1|Z1 ≥ `) = 1 (14)

and

lim
`→∞

E

[

(`Z1 − E[`Z1|Z1 ≥ `])4
∣

∣

∣
Z1 ≥ `

]

= 9. (15)

From (13) we see that the conditional mean and the most likely loss scenario coincide asymp-

totically, as asserted in Proposition 1. Combining (11) and (14) confirms the eigenvalue condition

for the covariance matrix and (12) and (15) provide the 4-th moment condition if we multiply by

` along the stressed direction.
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A.4 Laplace Distribution

Consider Z =
√

WN where N is N (0, I) and W follows an exponential distribution with mean

1/λ. As before, A(`) = {Z1 ≥ `} = {
√

WN1 ≥ `}, and φ is the pdf of the standard normal random

variable. It is well-known that P(Zi ≥ `) = 1
2e−

√
2λ` for all i. Set β =

√
2λ. From the memoryless

property of the exponential distribution,

E[Z1|Z1 ≥ `] =
E[Z11{Z1≥`}]

P(Z1 ≥ `)

=

∫ ∞

`
x

1

2
βe−βxdx × 2eβ`

= ` +
1

β
= ` +

1√
2λ

(16)

and

E[Z2
1 |Z1 ≥ `] =

E[Z2
11{Z1≥`}]

P(Z1 ≥ `)

=

∫ ∞

`
x2βe−βxdx × eβ`

=
(

` +
1

β

)2
+

1

β2
.

Hence

V(Z1|Z1 ≥ `) = 1/β2 = 1/(2λ). (17)

The kurtosis satisfies

E

[

(Z1 − E[Z1|Z1 ≥ `])4
∣

∣

∣
Z1 ≥ `

]

= 9. (18)

It is easy to see

E[Z2|Z1 ≥ `] = 0. (19)

The density of the generalized inverse Gaussian (GIG) distribution N−(α, β, γ) is given by

β−α/2γα/2

2Kα(
√

βγ)
wα−1e−

1

2
(β/w+γw)

where Kα denotes a modified Bessel function of the third kind with index α. It is known that

K1/2(x) = K−1/2(x) =
√

π
2xe−x. Hence for α = 1/2,−1/2,

gig(α, β, γ) =

∫ ∞

0
wα−1e−

1

2
(β/w+γw)dw

= 2
(β

γ

)α/2
Kα(

√

βγ)

=
√

2πβα/2−1/4γ−α/2−1/4e−
√

βγ .
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For x > 0,

E[W1{Z1≥`}|N1 = x] =

∫ ∞

`2/x2

wλe−λwdw =
( `2

x2
+

1

λ

)

e−λ`2/x2

.

Note that

E[Z2
2 |Z1 ≥ `] · P(Z1 ≥ `) = E

[

Z2
21{Z1≥`}

]

= E

[

WE[N 2
2 |W ]E[1{Z1≥`}|W ]

]

= E

[

WE[N 2
2 ]E[1{Z1≥`}|W ]

]

= E

[

WE[1{Z1≥`}|W ]
]

= E

[

W1{Z1≥`}
]

= E

[

E[W1{Z1≥`}|N1]
]

=

∫ ∞

0

( `2

x2
+

1

λ

)

e−λ`2/x2 1√
2π

e−x2/2dx

=
1

2
√

2π

∫ ∞

0

(

`2y−1/2−1 +
1

λ
y1/2−1

)

e−
1

2
(2λ`2/y+y)dy

=
1

2
√

2π
(`2 · gig(−1/2, 2λ`2, 1) +

1

λ
gig(1/2, 2λ`2, 1))

=
(

`2 1√
2λ`

+
1

λ

)1

2
e−

√
2λ`

= (`/
√

2λ + 1/λ)P(Z1 ≥ `).

Hence we finally get

V(Z2|Z1 ≥ `]) = E[Z2
2 |Z1 ≥ `] = (`/

√
2λ + 1/λ), (20)

which implies the 1√
`
Zj for j 6= 1 has asymptotic variance 1/

√
2λ under the condition of {Z1 ≥ `}.

It can be also shown that

E[Z4
2 |Z1 ≥ `] · P(Z1 ≥ `) = E

[

Z4
21{Z1≥`}

]

= E

[

W 21{Z1≥`}
]

= E

[

E[W 21{Z1≥`}|N1]
]

=

∫ ∞

0

( `4

x4
+

2`2

λx2
+

2

λ2

)

e−λ`2/x2 1√
2π

e−x2/2dx

=
1

2
√

2π

∫ ∞

0

(

`4y−3/2−1 2`2

λ
y−1/2−1 +

2

λ2
y1/2−1

)

e−
1

2
(2λ`2/y+y)dy

=
1

2
√

2π
(`4 · gig(−3/2, 2λ`2, 1) +

2`2

λ
· gig(−1/2, 2λ`2, 1) +

2

λ2
· gig(1/2, 2λ`2, 1))
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=
(

`4 1

2λ`2
(1 +

1√
2λ`

) +
2`2

λ

1√
2λ`

+
2

λ2

)1

2
e−

√
2λ`

=
(

`2 1

2λ
+ `

2λ + 1

2λ
√

2λ
+

2

λ2

)

P(Z1 ≥ `)

where we used K−3/2(x) = K3/2(x) =
√

π
2xe−x(1 + 1/x). Hence we finally get

E

[

(Z2 − E[Z2|Z1 ≥ `])4
∣

∣

∣
Z1 ≥ `

]

=
`2

2λ
+ o(`2). (21)

From (16) and (19), we conclude that the conditional mean and the most likely loss scenario

coincide asymptotically for the Laplace distribution, as claimed in Proposition 1. Together, (20)

and (17) confirm the eigenvalue condition for the covariance matrix, and (21) and (18) provide the

4-th moment condition if we divide the vectors orthogonal to the stressed direction by
√

`.

A.5 t Distribution

Consider Z = a
√

WN where N is N (0, I) and W is a positive mixing random variable. As before,

A(`) = {Z1 ≥ `} = {a
√

WN1 ≥ `}, φ is a pdf of the standard normal random variable, and a is

any positive constant.

E

[

Zk
11{Z1≥`}

]

= E[Zk
1 |Z1 ≥ `] · P(A(`))

= ak
E[W k/2Nk

1 1A(`)]

= ak
E

[

E[W k/2Nk
1 1A(`)|W ]

]

= ak
E

[

W k/2
E[Nk

1 1A(`)|W ]
]

= ak
E

[

W k/2

∫ ∞

`/(a
√

W )

xkφ(x)dx
]

= akhk,k(`/a).

E

[

Zk
2 1{Z1≥`}

]

= E[Zk
2 |Z1 ≥ `] · P(A(`))

= ak
E[W k/2Nk

2 1A(`)]

= ak
E

[

E[W k/2Nk
2 1A(`)|W ]

]

= ak
E

[

W k/2
E[Nk

2 |W ]E[1A(`)|W ]
]

= ak
E[Nk

2 ]E
[

W k/2

∫ ∞

`/(a
√

W )

φ(x)dx
]

=

{

0 for k = 1

akE

[

W k/2
∫∞
`/(a

√
W ) φ(x)dx

]

= akhk,0(`/a) for k = 2
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where

hk,j(`) := E

[

W k/2

∫ ∞

`/
√

W

xjφ(x)dx
]

.

Define

gr(`) := E

[

W r/2φ
( `√

W

)]

.

If we assume E[W k] < ∞ for relevant k’s, then we easily have the following differentiation rule:

d

d`
gr(`) = −` · gr−2(`).

Then we also have

d

d`
hk,j(`/a) =

d

d`
E

[

W k/2

∫ ∞

`/(a
√

W )
xjφ(x)dx

]

= −E

[

W k/2 `j

ajW j/2
φ
( `

a
√

W

) 1

a
√

W

]

= −`ja−j−1
E

[

W (k−j−1)/2φ
( `

a
√

W

)]

= −`ja−j−1gk−j−1(`/a).

A.5.1 Asymptotic Conditional Moments for the t-Distribution

Now take 1
W ∼ χ2

ν (that is, W ∼ IG( 1
2ν, 1

2 )), a =
√

ν, and fW (w) = 1
2ν/2Γ(ν/2)

w−ν/2−1e−
1

2w . Then

gr(`) = E

[

W r/2φ
( `√

W

)]

=
1√
2π

∫ ∞

0
wr/2e−`2/(2w) 1

2ν/2Γ(ν/2)
w−ν/2−1e−

1

2w dw

=
1√
2π

1

2ν/2Γ(ν/2)

∫ ∞

0
w−(ν−r)/2−1e−

`2/2+1/2

w dw

=
1√
2π

( `2+1
2 )−(ν−r)/2Γ((ν − r)/2)

2ν/2Γ(ν/2)

×
∫ ∞

0

( `2+1
2 )(ν−r)/2

Γ((ν − r)/2)
w−(ν−r)/2−1e−

`2/2+1/2

w dw

=
Γ(ν/2 − r/2)√
2π2r/2Γ(ν/2)

(`2 + 1)−(ν−r)/2.

Since Z1 ∼ t1(ν, 0, 1),

d

d`
P(A(`)) = −Γ(ν/2 + 1/2)

Γ(ν/2)
√

πν
(`2/ν + 1)−(ν+1)/2.

For the case of k + r = −1,

lim
`→∞

`kgr(`/
√

ν)
d
d`P(A(`))

= lim
`→∞

`k Γ(ν/2−r/2)√
2π2r/2Γ(ν/2)

(`2/ν + 1)−(ν−r)/2

−Γ(ν/2+1/2)
Γ(ν/2)

√
πν

(`2/ν + 1)−(ν+1)/2
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= −ν(k+1)/2Γ(ν/2 − r/2)

2(r+1)/2Γ(ν/2 + 1/2)
.

For r = 3, 1,−1,−3,−5,

R(r) := lim
`→∞

`kgr(`/
√

ν)
d
d`P(A(`))

=























−ν−3/2(ν − 1)−1(ν − 3)−1 for r = 3

−ν−1/2(ν − 1)−1 for r = 1

−ν1/2 for r = −1

−ν3/2(ν + 1) for r = −3

−ν5/2(ν + 1)(ν + 3) for r = −5

.

By the dominated convergence theorem, lim`→∞ `kP(A(`)) = 0 for k < ν and

lim
`→∞

E

[

W k/2

∫ ∞

`/(a
√

W )
xjφ(x)dx

]

= 0

for k, j = 1, 2. Hence we can apply the L’Hospital’s rule for the limit of ratios.

lim
`→∞

1

`k
E

[

Zk
1

∣

∣

∣
Z1 ≥ `

]

= lim
`→∞

E

[

Zk
11{Z1≥`}

]

`kP(A(`))

= lim
`→∞

d
d`E

[

Zk
1 1{Z1≥`}

]

k`k−1P(A(`)) + `k d
d`P(A(`))

= lim
`→∞

νk/2 d
d`hk,k(`/

√
ν)

k`k−1P(A(`)) + `k d
d`P(A(`))

= lim
`→∞

−νk/2`kν−(k+1)/2g−1(`/
√

ν)

k`k−1P(A(`)) + `k d
d`P(A(`))

= lim
`→∞

−ν−1/2`g−1(`/
√

ν)

kP(A(`)) + ` d
d`P(A(`))

=
1

k
−ν + 1

=
ν

ν − k
(22)

since

lim
`→∞

−ν−1/2g−1(`/
√

ν)
d
d`P(A(`))

= −ν−1/2R(−1) = 1

and

lim
`→∞

−ν−1/2`g−1(`/
√

ν)

P(A(`))
= −ν−1/2 lim

`→∞

g−1(`/
√

ν) + ` d
d`g−1(`/

√
ν)

d
d`P(A(`))

= −ν−1/2 lim
`→∞

g−1(`/
√

ν) − `2

ν g−3(`/
√

ν)
d
d`P(A(`))
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= −ν−1/2(R(−1)− ν−1R(−3))

= −ν.

Hence we get

lim
`→∞

V

(Z1

`

∣

∣

∣
Z1 ≥ `

)

= lim
`→∞

1

`2
E

[

Z2
1

∣

∣

∣
Z1 ≥ `

]

− lim
`→∞

(1

`
E

[

Z1

∣

∣

∣
Z1 ≥ `

])2

=
ν

ν − 2
−
( ν

ν − 1

)2
=

ν

(ν − 2)(ν − 1)2
. (23)

For computation with the other variances, we observe that

d

d`
h2,0(`/

√
ν) = −ν−1/2g1(`/

√
ν);

d2

d`2
h2,0(`/

√
ν) = `ν−3/2g−1(`/

√
ν);

d3

d`3
h2,0(`/

√
ν) = ν−3/2g−1(`/

√
ν) − `2ν−5/2g−3(`/

√
ν).

lim
`→∞

1

`2
E

[

Z2
2

∣

∣

∣
Z1 ≥ `

]

= lim
`→∞

E

[

Z2
21{Z1≥`}

]

`2P(A(`))

= lim
`→∞

ν d
d`h2,0(`/

√
ν)

2`P(A(`)) + `2 d
d`P(A(`))

=
ν

2( 1
1 + 1

−ν−1 ) + 1
ν−1(ν−1)−1

=
ν

(ν − 2)(ν − 1)

from the following values:

lim
`→∞

d
d`h2,0(`/

√
ν)

`2 d
d`P(A(`))

= lim
`→∞

−ν−1/2g1(`/
√

ν)

`2 d
d`P(A(`))

= −ν−1/2R(1) = ν−1(ν − 1)−1,

lim
`→∞

d2

d`2
h2,0(`/

√
ν)

` d
d`P(A(`))

= lim
`→∞

`ν−3/2g−1(`/
√

ν)

` d
d`P(A(`))

= ν−3/2R(−1) = −ν−1,

lim
`→∞

d3

d`3
h2,0(`/

√
ν)

d
d`P(A(`))

= lim
`→∞

ν−3/2g−1(`/
√

ν)− `2ν−5/2g−3(`/
√

ν)
d
d`P(A(`))

= ν−3/2R(−1)− ν−5/2R(−3)

= 1.

Hence we get

lim
`→∞

V

(Z2

`

∣

∣

∣
Z1 ≥ `

)

= lim
`→∞

1

`2
E

[

Z2
2

∣

∣

∣
Z1 ≥ `

]

− 02 =
ν

(ν − 2)(ν − 1)
. (24)
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For the computation of the conditional 4-th moment, we observe that

d

d`
h4,0(`/

√
ν) = −ν−1/2g3(`/

√
ν);

d2

d`2
h4,0(`/

√
ν) = `ν−3/2g1(`/

√
ν);

d3

d`3
h4,0(`/

√
ν) = ν−3/2g1(`/

√
ν)− `2ν−5/2g−1(`/

√
ν);

d4

d`4
h4,0(`/

√
ν) = −3`ν−5/2g−1(`/

√
ν) + `3ν−7/2g−3(`/

√
ν);

d5

d`5
h4,0(`/

√
ν) = −3ν−5/2g−1(`/

√
ν) + 6`2ν−7/2g−3(`/

√
ν) − `4ν−9/2g−5(`/

√
ν).

lim
`→∞

1

`4
E

[

Z4
2

∣

∣

∣
Z1 ≥ `

]

= lim
`→∞

E

[

Z4
21{Z1≥`}

]

`4P(A(`))

= lim
`→∞

ν d
d`h4,0(`/

√
ν)

4`3P(A(`)) + `4 d
d`P(A(`))

=
ν

ν2(ν − 1)(ν − 3)− 4ν2(ν − 1) + 12 ν2(ν−1)
ν−2 − 24 ν2

ν−2 + 24 ν
ν−2

=
1

(ν − 4)(ν − 3)(ν − 1)

from the following values:

lim
`→∞

d
d`h4,0(`/

√
ν)

`4 d
d`P(A(`))

= lim
`→∞

−ν−1/2g3(`/
√

ν)

`4 d
d`P(A(`))

= −ν−1/2R(3) = ν−2(ν − 1)−1(ν − 3)−1,

lim
`→∞

d2

d`2
h4,0(`/

√
ν)

`3 d
d`P(A(`))

= lim
`→∞

`ν−3/2g1(`/
√

ν)

`3 d
d`P(A(`))

= ν−3/2R(1) = −ν−2(ν − 1)−1,

lim
`→∞

d3

d`3
h4,0(`/

√
ν)

`2 d
d`P(A(`))

= lim
`→∞

ν−3/2g1(`/
√

ν) − `2ν−5/2g−1(`/
√

ν)

`2 d
d`P(A(`))

= ν−3/2R(1)− ν−5/2R(−1)

=
ν − 2

ν2(ν − 1)
,

lim
`→∞

d4

d`4
h4,0(`/

√
ν)

` d
d`P(A(`))

= lim
`→∞

−3`ν−5/2g−1(`/
√

ν) + `3ν−7/2g−3(`/
√

ν)

` d
d`P(A(`))

= −3ν−5/2R(−1) + ν−7/2R(−3)

=
2 − ν

ν2
,
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lim
`→∞

d5

d`5
h4,0(`/

√
ν)

d
d`P(A(`))

= lim
`→∞

−3ν−5/2g−1(`/
√

ν) + 6`2ν−7/2g−3(`/
√

ν)− `4ν−9/2g−5(`/
√

ν)
d
d`P(A(`))

= −3ν−5/2R(−1) + 6ν−7/2R(−3) − ν−9/2R(−5) = (ν − 2)/ν.

Hence we get

lim
`→∞

1

`4
E

[

(Z2 − E[Z2|Z1 ≥ `])4
∣

∣

∣
Z1 ≥ `

]

=
1

(ν − 4)(ν − 3)(ν − 1)
. (25)

Applying (22) with k = 1 provides the asymptotic ratio between the conditional mean and the

most likely loss scenario, as in Proposition 1. Together, (23), (24) and (10) confirm the eigenvalue

condition for the covariance matrix, and (22) with k = 4 and (25) confirm the 4-th moment

condition if we divide the vectors by `.
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